A080732 Smallest distance from n to a prime power (as defined in A246655).
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. - N. J. A. Sloane, Mar 24 2018
Programs
-
Mathematica
nn = 100; pp = Select[Range[2, Prime[1 + PrimePi[nn]]], Length[FactorInteger[#]] == 1 &]; Table[Min[Abs[n - pp]], {n, nn}] (* T. D. Noe, Mar 14 2012 *)
Comments