A080779 Triangle read by rows: n-th row gives expansion of the series for HarmonicNumber(n, -r).
1, 1, 1, 1, 3, 2, 0, 6, 12, 6, -4, 0, 40, 60, 24, 0, -60, 0, 300, 360, 120, 120, 0, -840, 0, 2520, 2520, 720, 0, 3360, 0, -11760, 0, 23520, 20160, 5040, -12096, 0, 80640, 0, -169344, 0, 241920, 181440, 40320, 0, -544320, 0, 1814400, 0, -2540160, 0, 2721600, 1814400, 362880
Offset: 0
Examples
The triangle t(n, m) begins: n\m 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 1 2: 1 3 2 3: 0 6 12 6 4: -4 0 40 60 24 5: 0 -60 0 300 360 120 6: 120 0 -840 0 2520 2520 720 7: 0 3360 0 -11760 0 23520 20160 5040 ... Row n=8: -12096 0 80640 0 -169344 0 241920 181440 40320; Row n=9: 0 -544320 0 1814400 0 -2540160 0 2721600 1814400 362880; Row n=10: 3024000 0 -19958400 0 39916800 0 -39916800 0 33264000 19958400 3628800. ... Reformatted and extended. - _Wolfdieter Lang_, Feb 04 2016
References
- J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, pp. 370 - 371.
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Wikipedia, Faulhaber's formula
Programs
-
Maple
RowPoly := n -> local j; n!*add(binomial(n + 1, j) * bernoulli(j, 1) * x^(n - j), j = 0..n): seq(lprint(seq(coeff(RowPoly(n), x, k), k = 0..n)), n = 0..8); # Peter Luschny, Mar 21 2024
-
Mathematica
Table[(n+1)! CoefficientList[Sum[k^n, {k, 0, m}]/m, m], {n,1,12}] and for n=0: 1. a = Join[{{1}}, Table[CoefficientList[Expand[n!*(BernoulliB[n + 1, x + 1] - BernoulliB[n + 1])/x], x], {n, 1, 10}]] Flatten[a] (* Roger L. Bagula and N. J. A. Sloane, Feb 18 2008 *) T[n_, k_] := Coefficient[ 1/x Integrate[ BernoulliB[n, x + 1], x], x, k]; (* Michael Somos, Aug 18 2018 *)
Formula
Row sums are (n + 1)!, last element in row n is n!
Alternative description using Bernoulli polynomials: Let p[x,n]=Sum[k^n,{k,1,x}]; 1/x /. NSolve[p[x,n]-Zeta[n]==0,x] where n>=2. Then t(n,m) = CoefficientList[Expand[n!*(BernoulliB[n + 1, x + 1] - BernoulliB[n + 1])/x], x]. - Roger L. Bagula and N. J. A. Sloane, Feb 18 2008
From Wolfdieter Lang, Feb 04 2016: (Start)
The row polynomials R(n, x) = (n+1)!*F(n, x)/x with F(n,x) = (Sum_{k=1..m} k^n)|{m=x} satisfy the recurrence R(n, x) = n!*(((x + 1)^(n+1) - 1)/x - Sum{k=0..n-1} (binomial(n+1, k)*R(k, x)/(k+1)!)), n >= 1, and R(0, x) = 1. See the Silverman reference, pp. 370 - 371, for F(n, x).
t(n, m) = [x^m] ((Bernoulli(n+1, x+1) - Bernoulli(n+1, 1))/x). See a comment above. For these Bernoulli polynomials see A264388 and A264389. (End)
t(n, m) = t(n-1, m-1) * n/(m+1). - Michael Somos, Aug 18 2018
T(n, k) = [x^k] n!*Sum_{j=0..n} binomial(n+1, j)*Bernoulli(j, 1)*x^(n - j). - Peter Luschny, Mar 21 2024
Comments