cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A080811 a(1) = 8, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

8, 81, 68921, 671898241, 67499118303941862584001, 6576499147308118090309591239435044518621593475579845001
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Crossrefs

Programs

  • Maple
    buffedStr := proc(n,candid) local f ; if length(n) = 0 then RETURN(true) ; fi ; f := SearchText(substring(n,1),candid) ; if f = 0 then RETURN(false) ; else if buffedStr(substring(n,2..-1),substring(candid,f+1..-1)) = true then RETURN(true) ; else RETURN(false) ; fi ; fi ; end: A080811 := proc(preva,n) local i,tst ; i := 1 ; while true do tst := i^n ; if buffedStr(convert(preva,string),convert(tst,string)) = true then RETURN(tst) ; fi ; i := i+1 ; od: end: an :=8 ; for n from 2 to 15 do an := A080811(an,n) ; end ; # R. J. Mathar, Sep 20 2006

Extensions

2 more terms from R. J. Mathar, Sep 20 2006
One more term. Sean A. Irvine, Aug 31 2009

A080809 a(1) = 6; thereafter, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

6, 16, 216, 2085136, 62019685191371643, 82626753081964483505319130781618465733184
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Crossrefs

Programs

  • Maple
    buffedStr := proc(n,candid) local f ; if length(n) = 0 then RETURN(true) ; fi ; f := SearchText(substring(n,1),candid) ; if f = 0 then RETURN(false) ; else if buffedStr(substring(n,2..-1),substring(candid,f+1..-1)) = true then RETURN(true) ; else RETURN(false) ; fi ; fi ; end: A080809 := proc(preva,n) local i,tst ; i := 1 ; while true do tst := i^n; if buffedStr(convert(preva,string),convert(tst,string)) = true then RETURN(tst) ; fi ; i := i+1 ; od: end: an :=6 ; for n from 2 to 15 do an := A080809(an,n) ; end ; # R. J. Mathar, Sep 20 2006

Formula

a(n)=A080514(n), n>1. - R. J. Mathar, Sep 18 2008

Extensions

More terms from R. J. Mathar, Sep 20 2006
Copied a term from A080514. - Sean A. Irvine, Sep 01 2009

A080810 a(1) = 7, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

7, 576, 17576, 1475789056, 1420778345789277056227207, 149247077443060991182553045537892735703095362592472033442634721
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Examples

			24^2=576. 26^3=17576. 196^4=1475789056. 67687^5=1420778345789277056227207.
		

Crossrefs

Programs

  • Maple
    buffedStr := proc(n,candid) local f ; if length(n) = 0 then RETURN(true) ; fi ; f := SearchText(substring(n,1),candid) ; if f = 0 then RETURN(false) ; else if buffedStr(substring(n,2..-1),substring(candid,f+1..-1)) = true then RETURN(true) ; else RETURN(false) ; fi ; fi ; end: A080810 := proc(preva,n) local i,tst ; i := 1 ; while true do tst := i^n ; if buffedStr(convert(preva,string),convert(tst,string)) = true then RETURN(tst) ; fi ; i := i+1 ; od: end: an :=7 ; for n from 2 to 15 do an := A080810(an,n) ; end ; # R. J. Mathar, Sep 20 2006

Extensions

Corrected and extended by R. J. Mathar, Sep 20 2006
One more term. Sean A. Irvine, Sep 01 2009

A080812 a(1) = 9, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

9, 49, 4096, 3748096, 4932784804069376, 44934932784038660743085694310776796224
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

Essentially the same as A080808.

Crossrefs

Extensions

3 more terms from Sean A. Irvine, Sep 06 2009

A360495 Triangle read by rows: T(n,k) is the minimum number of pairwise comparisons needed (in the worst case) to determine the k-th largest of n distinct numbers, for 1 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 4, 4, 3, 4, 6, 6, 6, 4, 5, 7, 8, 8, 7, 5, 6, 8, 10, 10, 10, 8, 6, 7, 9, 11, 12, 12, 11, 9, 7, 8, 11, 12, 14, 14, 14, 12, 11, 8, 9, 12, 14, 15, 16, 16, 15, 14, 12, 9, 10, 13, 15, 17, 18, 18, 18, 17, 15, 13, 10, 11, 14, 17, 18, 19, 20, 20, 19, 18, 17, 14, 11
Offset: 1

Views

Author

Paolo Xausa, Feb 09 2023

Keywords

Comments

Also known in the literature as the selection problem, where T(n,k) is usually denoted by V_t(n), with t = k.
Knuth (1998) provides a historical background (the problem arose in 1883, when C. L. Dodgson--alias Lewis Carroll--proposed a better way to design tennis tournaments so that the true second- and third-best players could be determined) and a survey of recent results, including some upper and lower bounds (see Formula section).
No general formula for the exact value of T(n,k) is known, except for specific cases (e.g., k = 1 and k = 2).
Terms are taken from Gasarch, Kelly and Pugh (1996), p. 92, Table 1, and from Oksanen (2005).

Examples

			Triangle begins:
  n\k|  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  ---+-------------------------------------------------
   1 |  0
   2 |  1  1
   3 |  2  3  2
   4 |  3  4  4  3
   5 |  4  6  6  6  4
   6 |  5  7  8  8  7  5
   7 |  6  8 10 10 10  8  6
   8 |  7  9 11 12 12 11  9  7
   9 |  8 11 12 14 14 14 12 11  8
  10 |  9 12 14 15 16 16 15 14 12  9
  11 | 10 13 15 17 18 18 18 17 15 13 10
  12 | 11 14 17 18 19 20 20 19 18 17 14 11
  13 | 12 15 18 20 21 22 23 22 21 20 18 15 12
  14 | 13 16 19 21 23 24  ?  ? 24 23 21 19 16 13
  15 | 14 17 20 23 25  ?  ?  ?  ?  ? 25 23 20 17 14
  ...
		

References

  • Charles L. Dodgson, Lawn Tennis Tournaments: True Method of Assigning Prizes, with a Proof of the Fallacy of the Present Method, Macmillan, London, 1883.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd edition, Addison-Wesley, Reading, MA, 1998, pp. 207-216.
  • J. Schreier, On tournament elimination systems, Mathesis Polska 7, 1932, pp. 154-160 (in Polish).
  • Hugo Steinhaus, Mathematical Snapshots, Third American Edition, Oxford University Press, New York, 1983, pp. 54-55.

Crossrefs

Cf. A036604, A080804 (2nd column), A215476, A374236 (row sums).

Formula

T(n,1) = T(n,n) = n-1.
T(n,2) = n-2+ceiling(log_2(n)) = A080804(n-1), for n >= 2.
T(n,k) = T(n,n-k+1).
T(n,ceiling(n/2)) = A215476(n).
Some upper bounds:
T(n,k) <= n-k+(k-1)*ceiling(log_2(n-k+2)).
T(n,3) <= n+1+ceiling(log_2((n-1)/4))+ceiling(log_2((n-1)/5)).
T(n,k) <= 15*n-163, for n > 32.
Some lower bounds:
T(n,k) >= n+k-3+Sum_{j=0,k-2} ceiling(log_2((n-k+2)/(k+j))), for 2 <= k <= (n+1)/2.
T(n,k) >= n+m-2*ceiling(sqrt(m)), where m = 2+ceiling(log_2(binomial(n,k)/(n-k+1))).

A080807 a(1) = 3, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

3, 36, 32768, 20632736881, 2096638274713626813358181376, 2095266319949834829710838437415365780027681350359080101817236461769
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

Next term is > 3*10^43. - David Wasserman, May 14 2004

Crossrefs

Extensions

One more term from Sean A. Irvine, Sep 01 2009
Showing 1-6 of 6 results.