cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080806 Positive integer values of n such that 6*n^2-5 is a square.

Original entry on oeis.org

1, 3, 7, 29, 69, 287, 683, 2841, 6761, 28123, 66927, 278389, 662509, 2755767, 6558163, 27279281, 64919121, 270037043, 642633047, 2673091149, 6361411349, 26460874447, 62971480443, 261935653321, 623353393081, 2592895658763
Offset: 1

Views

Author

John W. Layman, Mar 24 2003

Keywords

Comments

The corresponding sequence for which 6n^2-6 is a square is A001079.
Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 20 = 0. - Colin Barker, Feb 09 2014

Examples

			29 is a term of the sequence since 6*29^2 - 5 = 5041 = 71^2.
		

Crossrefs

Programs

  • Magma
    I:=[1,3,7,29]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
  • Mathematica
    Do[ If[ IntegerQ[ Sqrt[6n^2 - 5]], Print[n]], {n, 1, 3*10^7}]
    a[1]=1; a[2]=3; a[3]=7; a[4]=29; a[n_] := a[n]=10a[n-2]-a[n-4]
    CoefficientList[Series[(1 - x) (1 + 4 x + x^2)/(1 - 10 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)

Formula

a(n) = 10*a(n-2)-a(n-4).
G.f.: x*(1-x)*(1+4*x+x^2)/(1-10*x^2+x^4). - Colin Barker, Jun 13 2012
a(2*n+1) = ((6+r)*(5+2*r)^n+(6-r)*(5+2*r)^n)/12, a(2*n+2) = ((18+7*r)*(5+2*r)^n+(18-7*r)*(5-2*r)^n)/12, where r=sqrt(6) and n>=0. - Paul Weisenhorn, Sep 01 2012

Extensions

Extended by Robert G. Wilson v, Apr 14 2003