cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A077288 First member of the Diophantine pair (m,k) that satisfies 6(m^2 + m) = k^2 + k: a(n) = m.

Original entry on oeis.org

0, 1, 3, 14, 34, 143, 341, 1420, 3380, 14061, 33463, 139194, 331254, 1377883, 3279081, 13639640, 32459560, 135018521, 321316523, 1336545574, 3180705674, 13230437223, 31485740221, 130967826660, 311676696540, 1296447829381, 3085281225183, 12833510467154
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002

Keywords

Comments

Also nonnegative m such that 24*m^2 + 24*m + 1 is a square. - Gerald McGarvey, Apr 02 2005

Examples

			a(3) = 2*3 - 1 + 9 = 14, a(4) = 2*14 - 3 + 9 = 34, etc.
G.f. = x + 3*x^2 + 14*x^3 + 34*x^4 + 143*x^5 + 341*x^6 + 1420*x^7 + 3380*x^8 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

The k values are in A077291
Cf. A053141.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)^2/((1-x)*(1-10*x^2+x^4)))); // G. C. Greubel, Jul 15 2018
  • Maple
    f := gfun:-rectoproc({a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [$ (0 .. 100)]); - Vladimir Pletser, Jul 24 2020
  • Mathematica
    CoefficientList[Series[x*(1 + x)^2/((1 - x)*(1 - 10 x^2 + x^4)), {x, 0, 40}],x] (* T. D. Noe, Jun 04 2012 *)
    LinearRecurrence[{1, 10, -10, -1, 1}, {0, 1, 3, 14, 34}, 50] (* G. C. Greubel, Jul 15 2018 *)
    a[ n_] := With[{m = Max[n, -1 - n]}, SeriesCoefficient[ x (1 + x)^2 / ((1 - x) (1 - 10 x^2 + x^4)), {x, 0, m}]]; (* Michael Somos, Jul 15 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+x)^2/((1-x)*(1-10*x^2+x^4)))) \\ G. C. Greubel, Jul 15 2018
    

Formula

Let b(n) be A072256. Then a(2*n+2) = 2*a(2*n+1) - a(2*n) + b(n+1), a(2*n+3) = 2*a(2*n+2) - a(2*n+1) + b(n+2), with a(0)=0, a(1)=1.
G.f.: x*(1+x)^2/((1-x)*(1-10*x^2+x^4)).
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jul 15 2018
a(n) = 10*a(n-2) - a(n-4) + 4, n > 4. - Vladimir Pletser, Feb 29 2020
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 24 2020
2*a(n) + 1 = A080806(n+1). - R. J. Mathar, Oct 01 2021

A077291 Second member of Diophantine pair (m,k) that satisfies 6*(m^2 + m) = k^2 + k: a(n) = k.

Original entry on oeis.org

0, 3, 8, 35, 84, 351, 836, 3479, 8280, 34443, 81968, 340955, 811404, 3375111, 8032076, 33410159, 79509360, 330726483, 787061528, 3273854675, 7791105924, 32407820271, 77123997716, 320804348039, 763448871240, 3175635660123, 7557364714688, 31435552253195
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002

Keywords

Comments

The corresponding m are given in A077288.
Numbers x such that (2*x^2 + 2*x + 3)/3 = y^2. The corresponding y are given by A080806. - Klaus Purath, Jul 30 2025

Examples

			b(3)=630 so a(3) = (-1 + sqrt(8*630 + 1))/2 = (-1 + sqrt(5041))/2 = (71 - 1)/2 = 35.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-2) = -4, a(-1) = -1, a(0) = 0, a(1) = 3, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [$ (0 .. 40)])[]; # Vladimir Pletser, Jul 26 2020
  • Mathematica
    LinearRecurrence[{1,10,-10,-1,1},{0,3,8,35,84},30] (* Harvey P. Dale, Oct 11 2019 *)
  • PARI
    concat(0, Vec(x*(x^3+3*x^2-5*x-3)/((x-1)*(x^4-10*x^2+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

Let b(n) be A077290. Then a(n) = (-1 + sqrt(8*b(n) + 1))/2.
G.f.: x*(x^3+3*x^2-5*x-3) / ((x-1)*(x^4-10*x^2+1)). - Colin Barker, Mar 09 2012
From Vladimir Pletser, Jul 26 2020: (Start)
a(n) = 10*a(n-2) - a(n-4) + 4 with a(-2)=-4, a(-1)=-1, a(0)=0, a(1)=3.
Can be defined for negative n by setting a(-n) = - a(n-1) - 1 for all n in Z.
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5). (End)

A237610 Positive integers k such that x^2 - 10xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

8, 15, 20, 23, 24, 32, 47, 60, 71, 72, 80, 87, 92, 95, 96, 116, 128, 135, 152, 159, 167, 180, 188, 191, 200, 207, 212, 215, 216, 239, 240, 263, 276, 284, 288, 303, 311, 320, 335, 344, 348, 359, 368, 375, 380, 383, 384, 392, 404, 423, 431, 447, 456, 464, 479
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Examples

			15 is in the sequence because x^2 - 10xy + y^2 + 15 = 0 has integer solutions, for example (x, y) = (2, 19).
		

Crossrefs

Cf. A072256 (k = 8), A129445 (k = 15), A080806 (k = 20), A074061 (k = 23), A001079 (k = 24).

Programs

  • PARI
    is(n)=m=bnfisintnorm(bnfinit(x^2-10*x+1),-n);#m>0&&denominator(polcoeff(m[1],1))==1 \\ Ralf Stephan, Feb 11 2014

A080811 a(1) = 8, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

8, 81, 68921, 671898241, 67499118303941862584001, 6576499147308118090309591239435044518621593475579845001
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Crossrefs

Programs

  • Maple
    buffedStr := proc(n,candid) local f ; if length(n) = 0 then RETURN(true) ; fi ; f := SearchText(substring(n,1),candid) ; if f = 0 then RETURN(false) ; else if buffedStr(substring(n,2..-1),substring(candid,f+1..-1)) = true then RETURN(true) ; else RETURN(false) ; fi ; fi ; end: A080811 := proc(preva,n) local i,tst ; i := 1 ; while true do tst := i^n ; if buffedStr(convert(preva,string),convert(tst,string)) = true then RETURN(tst) ; fi ; i := i+1 ; od: end: an :=8 ; for n from 2 to 15 do an := A080811(an,n) ; end ; # R. J. Mathar, Sep 20 2006

Extensions

2 more terms from R. J. Mathar, Sep 20 2006
One more term. Sean A. Irvine, Aug 31 2009

A080809 a(1) = 6; thereafter, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

6, 16, 216, 2085136, 62019685191371643, 82626753081964483505319130781618465733184
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Crossrefs

Programs

  • Maple
    buffedStr := proc(n,candid) local f ; if length(n) = 0 then RETURN(true) ; fi ; f := SearchText(substring(n,1),candid) ; if f = 0 then RETURN(false) ; else if buffedStr(substring(n,2..-1),substring(candid,f+1..-1)) = true then RETURN(true) ; else RETURN(false) ; fi ; fi ; end: A080809 := proc(preva,n) local i,tst ; i := 1 ; while true do tst := i^n; if buffedStr(convert(preva,string),convert(tst,string)) = true then RETURN(tst) ; fi ; i := i+1 ; od: end: an :=6 ; for n from 2 to 15 do an := A080809(an,n) ; end ; # R. J. Mathar, Sep 20 2006

Formula

a(n)=A080514(n), n>1. - R. J. Mathar, Sep 18 2008

Extensions

More terms from R. J. Mathar, Sep 20 2006
Copied a term from A080514. - Sean A. Irvine, Sep 01 2009

A080810 a(1) = 7, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

7, 576, 17576, 1475789056, 1420778345789277056227207, 149247077443060991182553045537892735703095362592472033442634721
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Examples

			24^2=576. 26^3=17576. 196^4=1475789056. 67687^5=1420778345789277056227207.
		

Crossrefs

Programs

  • Maple
    buffedStr := proc(n,candid) local f ; if length(n) = 0 then RETURN(true) ; fi ; f := SearchText(substring(n,1),candid) ; if f = 0 then RETURN(false) ; else if buffedStr(substring(n,2..-1),substring(candid,f+1..-1)) = true then RETURN(true) ; else RETURN(false) ; fi ; fi ; end: A080810 := proc(preva,n) local i,tst ; i := 1 ; while true do tst := i^n ; if buffedStr(convert(preva,string),convert(tst,string)) = true then RETURN(tst) ; fi ; i := i+1 ; od: end: an :=7 ; for n from 2 to 15 do an := A080810(an,n) ; end ; # R. J. Mathar, Sep 20 2006

Extensions

Corrected and extended by R. J. Mathar, Sep 20 2006
One more term. Sean A. Irvine, Sep 01 2009

A080807 a(1) = 3, a(n)= smallest n-th power obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

3, 36, 32768, 20632736881, 2096638274713626813358181376, 2095266319949834829710838437415365780027681350359080101817236461769
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

Next term is > 3*10^43. - David Wasserman, May 14 2004

Crossrefs

Extensions

One more term from Sean A. Irvine, Sep 01 2009

A082651 Positive integer values of n such that 5n^2+11 is a square.

Original entry on oeis.org

1, 7, 25, 127, 449, 2279, 8057, 40895, 144577, 733831, 2594329, 13168063, 46553345, 236291303, 835365881, 4240075391, 14990032513, 76085065735, 268985219353, 1365291107839, 4826743915841, 24499154875367, 86612405265785, 439619496648767, 1554196550868289
Offset: 1

Views

Author

John W. Layman, May 16 2003

Keywords

Comments

The corresponding sequence for which 5n^2+4 is a square is A001906 (a bisection of the Fibonacci sequence).

Examples

			25 is a term of the sequence since 5*25^2 + 11 = 56^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 18, 0, -1}, {1, 7, 25, 127}, 50] (* Paolo Xausa, Mar 18 2024 *)
  • PARI
    Vec(x*(1+7*x+7*x^2+x^3)/(1-18*x^2+x^4) + O(x^100)) \\ Colin Barker, Nov 06 2014

Formula

a(n) = 18*a(n-2) - a(n-4).
G.f.: x*(1+7*x+7*x^2+x^3)/(1-18*x^2+x^4). - Colin Barker, Jun 14 2012

Extensions

More terms from Colin Barker, Nov 06 2014

A256545 Composite numbers k such that k*phi(k) is in A002378.

Original entry on oeis.org

6, 30, 434, 510, 616, 912, 1640, 2989, 3003, 5934, 7280, 8600, 10726, 12700, 13825, 14288, 18699, 19389, 54153, 59394, 59906, 70563, 72816, 116052, 117964, 121954, 131070, 134212, 140752, 177000, 206514, 210728, 274023, 319522, 418610, 437736, 456666
Offset: 1

Views

Author

Robert Israel, Apr 01 2015

Keywords

Comments

Composite k such that 4*A002618(k)+1 is a square.
For all primes p, 4*A002618(p) + 1 = (2*p-1)^2.
The only semiprime < 10^7 in the sequence is 6.
k = 2*p with p prime is in the sequence if 2*p-1 is in A001653. However, the only such p < 10^3000 is 3.
Similarly, k = 3*p with p prime is in the sequence if 2*p-1 is in A080806. However, the only such p < 10^3000 is 2.

Examples

			a(1) = 6 is in the sequence because 6*phi(6) = 12 = 4*3.
		

Crossrefs

Programs

  • Maple
    select(n -> not isprime(n) and issqr(1+4*n*numtheory:-phi(n)), [$1..10^6]);
  • Mathematica
    Select[Range[10^6],!PrimeQ[#]&&IntegerQ[Sqrt[4*#*EulerPhi[#]+1]]&] (* Ivan N. Ianakiev, Apr 02 2015 *)
  • PARI
    lista(nn) = {forcomposite (n=1, nn, if (ispolygonal(n*eulerphi(n)/2, 3), print1(n ", ")););} \\ Michel Marcus, Apr 02 2015

A216073 The list of the a(n)-values in the common solutions to k+1=b^2 and 6*k+1=a^2.

Original entry on oeis.org

1, 7, 17, 71, 169, 703, 1673, 6959, 16561, 68887, 163937, 681911, 1622809, 6750223, 16064153, 66820319, 159018721, 661452967, 1574123057, 6547709351, 15582211849, 64815640543, 154247995433, 641608696079, 1526897742481, 6351271320247, 15114729429377, 62871104506391
Offset: 1

Views

Author

Paul Weisenhorn, Sep 01 2012

Keywords

Comments

The equations are equivalent to the Pell equation a^2 - 6*b^2 = -5 with the 2 fundamental solutions (1;1) and (7;3) and the solution (5;2) for the unit form.
The associated b(n) are in A080806.
A181442(n) = (A080806(n) + 1)/2.
A180483(n) = (a(n) + 5)/2.

Crossrefs

Programs

  • Maple
    a(1)=1: a(2)=7: a(3)=17: a(4)=71:
    for n from 5 to 20 do
      a(n)=10*a(n-2)-a(n-4):
      printf("%9d%20d\n",n,a(n)):
    end do:
  • Mathematica
    LinearRecurrence[{0,10,0,-1}, {1,7,17,71}, 50] (* G. C. Greubel, Feb 22 2017 *)
  • PARI
    a(n) = if(n<1, 0, if(n<5, [1,7,17, 71][n], 10*a(n-2)-a(n-4) ) );
    /* Joerg Arndt, Sep 03 2012 */
    
  • SageMath
    def b(n): return (1/2)*(1+(-1)^n)*chebyshev_U(n//2, 5)
    def A216073(n): return b(n) +7*b(n-1) +7*b(n-2) +b(n-3)
    [A216073(n) for n in (0..50)] # G. C. Greubel, Apr 28 2022

Formula

a(n) = 10*a(n-2) - a(n-4).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+7*x+7*x^2+x^3)/(1-10*x^2+x^4).
a(2*n+1) = ((1+r)*(5+2*r)^n + (1-r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.
a(2*n+2) = ((7+3*r)*(5+2*r)^n + (7-3*r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.
a(n) = -((5-2*r)^(1/4)*((2*r+5)^((-1)^n/4+n/2)*(-1)^n - r*(2*r+5)^((-1)^n/4+n/2)) + (2*r+5)^(1/4)*((5-2*r)^((-1)^n/4+n/2)*(-1)^n + (5-2*r)^((-1)^n/4+n/2)*r))/(2*(5-2*r)^(1/4)*(2*r+5)^(1/4)) with r=sqrt(6) and 1<=n. - Alexander R. Povolotsky, Sep 01 2012
a(n) = b(n) +7*b(n-1) +7*b(n-2) +b(n-3), where b(n) = (1/2)*(1 +(-1)^n)* ChebyshevU(n/2, 5). - G. C. Greubel, Apr 28 2022
Showing 1-10 of 10 results.