A053141
a(0)=0, a(1)=2 then a(n) = a(n-2) + 2*sqrt(8*a(n-1)^2 + 8*a(n-1) + 1).
Original entry on oeis.org
0, 2, 14, 84, 492, 2870, 16730, 97512, 568344, 3312554, 19306982, 112529340, 655869060, 3822685022, 22280241074, 129858761424, 756872327472, 4411375203410, 25711378892990, 149856898154532, 873430010034204, 5090723162050694, 29670908962269962, 172934730611569080
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- A. Behera and G. K. Panda, On the Square Roots of Triangular Numbers, Fib. Quart., 37 (1999), pp. 98-105.
- Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
- P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- aBa Mbirika, Janee Schrader, and Jürgen Spilker, Pell and Associated Pell Braid Sequences as GCDs of Sums of k Consecutive Pell, Balancing, and Related Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
- G. K. Panda, Sequence balancing and cobalancing numbers, Fib. Q., Vol. 45, No. 3 (2007), 265-271. See p. 266.
- Michael Penn, (co) balancing numbers, YouTube video, 2022.
- Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
- Robert Phillips, A triangular number result, 2009.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
- Burkard Polster, Nice merging together, Mathologer video (2015).
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- A. Tekcan, M. Tayat, and M. E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
-
a053141 n = a053141_list !! n
a053141_list = 0 : 2 : map (+ 2)
(zipWith (-) (map (* 6) (tail a053141_list)) a053141_list)
-- Reinhard Zumkeller, Jan 10 2012
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
A053141 := proc(n)
option remember;
if n <= 1 then
op(n+1,[0,2]) ;
else
6*procname(n-1)-procname(n-2)+2 ;
end if;
end proc: # R. J. Mathar, Feb 05 2016
-
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *)
Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
-
{x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)};
a(n) = round((P(2*n+1) - 1)/2);
for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
-
[(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020
A077289
Triangular numbers that are 1/6 of another triangular number.
Original entry on oeis.org
0, 1, 6, 105, 595, 10296, 58311, 1008910, 5713890, 98862891, 559902916, 9687554415, 54864771885, 949281469786, 5376187741821, 93019896484620, 526811533926580, 9115000574022981, 51622154137063026, 893177036357767525, 5058444293898249975, 87522234562487194476
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002
b(3)=14 so a(3) = 14*15/2 = 105, etc.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
-
f := gfun:-rectoproc({a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(n) = 98*a(n-2)-a(n-4)+7}, a(n), remember); map(f, [`$`(0 .. 1000)])[]; # Vladimir Pletser, Feb 19 2021
-
tr6Q[n_]:= IntegerQ[1/2 (Sqrt[1+48n]-1)]; Select[Accumulate[ Range[0,1380000]],tr6Q] (* Harvey P. Dale, Apr 21 2011 *)
-
T(n)=n*(n+1)\2;
istriang(n)=issquare(8*n+1);
for(n=0, 10^10, t=T(n); if ( t%6==0 && istriang(t\6), print1(t\6, ", ") ) );
\\ Joerg Arndt, Jul 03 2013
-
concat(0, Vec(-x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
A077291
Second member of Diophantine pair (m,k) that satisfies 6*(m^2 + m) = k^2 + k: a(n) = k.
Original entry on oeis.org
0, 3, 8, 35, 84, 351, 836, 3479, 8280, 34443, 81968, 340955, 811404, 3375111, 8032076, 33410159, 79509360, 330726483, 787061528, 3273854675, 7791105924, 32407820271, 77123997716, 320804348039, 763448871240, 3175635660123, 7557364714688, 31435552253195
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002
b(3)=630 so a(3) = (-1 + sqrt(8*630 + 1))/2 = (-1 + sqrt(5041))/2 = (71 - 1)/2 = 35.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1).
-
f := gfun:-rectoproc({a(-2) = -4, a(-1) = -1, a(0) = 0, a(1) = 3, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [$ (0 .. 40)])[]; # Vladimir Pletser, Jul 26 2020
-
LinearRecurrence[{1,10,-10,-1,1},{0,3,8,35,84},30] (* Harvey P. Dale, Oct 11 2019 *)
-
concat(0, Vec(x*(x^3+3*x^2-5*x-3)/((x-1)*(x^4-10*x^2+1)) + O(x^100))) \\ Colin Barker, May 15 2015
A077290
Triangular numbers that are 6 times other triangular numbers.
Original entry on oeis.org
0, 6, 36, 630, 3570, 61776, 349866, 6053460, 34283340, 593177346, 3359417496, 58125326490, 329188631310, 5695688818716, 32257126450926, 558119378907720, 3160869203559480, 54690003444137886, 309732924822378156, 5359062218146605150, 30350665763389499850
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002
The k-th triangular number is T(k) = k*(k+1)/2, so T(35)/T(14) = (35*36/2)/(14*15/2) = 630/105 = 6, so T(35)=630 is a term. - _Jon E. Schoenfield_, Feb 20 2021
- Colin Barker, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
-
f := gfun:-rectoproc({a(-2) = 6, a(-1) = 0, a(0) = 0, a(1) = 6, a(n) = 98*a(n-2)-a(n-4)+42}, a(n), remember); map(f, [`$`(0 .. 1000)])[]; # Vladimir Pletser, Feb 20 2021
-
CoefficientList[Series[-6 x (x^2 + 5 x + 1)/((x - 1) (x^2 - 10 x + 1) (x^2 + 10 x + 1)), {x, 0, 20}], x] (* Michael De Vlieger, Apr 21 2021 *)
-
T(n)=n*(n+1)\2;
istriang(n)=issquare(8*n+1);
for(n=0,10^10, t=T(n); if ( t%6==0 && istriang(t\6), print1(t,", ") ) );
\\ Joerg Arndt, Jul 03 2013
-
concat(0, Vec(-6*x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
A080806
Positive integer values of n such that 6*n^2-5 is a square.
Original entry on oeis.org
1, 3, 7, 29, 69, 287, 683, 2841, 6761, 28123, 66927, 278389, 662509, 2755767, 6558163, 27279281, 64919121, 270037043, 642633047, 2673091149, 6361411349, 26460874447, 62971480443, 261935653321, 623353393081, 2592895658763
Offset: 1
29 is a term of the sequence since 6*29^2 - 5 = 5041 = 71^2.
-
I:=[1,3,7,29]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
-
Do[ If[ IntegerQ[ Sqrt[6n^2 - 5]], Print[n]], {n, 1, 3*10^7}]
a[1]=1; a[2]=3; a[3]=7; a[4]=29; a[n_] := a[n]=10a[n-2]-a[n-4]
CoefficientList[Series[(1 - x) (1 + 4 x + x^2)/(1 - 10 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
A103200
a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.
Original entry on oeis.org
1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
Offset: 1
K. S. Bhanu and M. N. Deshpande, Mar 24 2005
- K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.
-
I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
-
a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # Emeric Deutsch, Apr 13 2005
-
RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* Harvey P. Dale, Sep 27 2011 *)
CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)
A105038
Nonnegative n such that 6*n^2 + 6*n + 1 is a square.
Original entry on oeis.org
0, 4, 44, 440, 4360, 43164, 427284, 4229680, 41869520, 414465524, 4102785724, 40613391720, 402031131480, 3979697923084, 39394948099364, 389969783070560, 3860302882606240, 38213059042991844, 378270287547312204, 3744489816430130200, 37066627876753989800
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
CoefficientList[Series[4x/(1-11x+11x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{11,-11,1},{0,4,44},30] (* Harvey P. Dale, Sep 29 2013 *)
-
for(n=0,427284,if(issquare(6*n*(n+1)+1),print1(n,",")))
-
Vec(4*x/(1-11*x+11*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2012
A336624
Triangular numbers that are one-eighth of other triangular numbers; T(t) such that 8*T(t)=T(u) for some u where T(k) is the k-th triangular number.
Original entry on oeis.org
0, 15, 66, 17391, 76245, 20069280, 87986745, 23159931810, 101536627566, 26726541239541, 117173180224500, 30842405430498585, 135217748442445515, 35592109140254127630, 156041164529401899891, 41073263105447832786516, 180071368649181350028780, 47398510031577658781511915
Offset: 0
a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular.
a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66;
a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..650
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400.
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* Vaclav Kotesovec, Sep 08 2020 *)
Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Jan 15 2024 *)
-
concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ Colin Barker, Aug 08 2020
A336625
Indices of triangular numbers that are eight times other triangular numbers.
Original entry on oeis.org
0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1
a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
- Vladimir Pletser, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020
A336623
First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.
Original entry on oeis.org
0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0
a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289 ,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0, a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020
Showing 1-10 of 14 results.
Comments