A152052
Number of cousin primes < 10^n.
Original entry on oeis.org
2, 9, 41, 203, 1216, 8144, 58622, 440258, 3424680, 27409999, 224373161, 1870585459, 15834656003, 135779962760, 1177207270204
Offset: 1
(3,7) and (7,11) are cousin primes < 10 since 7 < 10. So 2 is the first entry in the sequence.
A080841
Number of pairs (p,q) of (not necessarily consecutive) primes with q-p = 6 and q < 10^n.
Original entry on oeis.org
0, 15, 74, 411, 2447, 16386, 117207, 879908, 6849047, 54818296, 448725003, 3741217498
Offset: 1
- A. Granville, G. Martin, Prime number races, Amer. Math. Monthly vol 113, no 1 (2006) p 1.
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].
-
{c=0; p=7; for(n=1,9, while(p<10^n,if(isprime(p-6),c++); p=nextprime(p+1)); print1(c,","))}
A152127
Sum of cousin primes < 10^n.
Original entry on oeis.org
28, 766, 34522, 1706602, 107863996, 7379208796, 542100094312, 41248685420836, 3233516261489332, 260607555289408894, 21446383929686290726, 1795656778320649469818, 152541729206365604807782
Offset: 1
(3,7) and (7,11) are the cousin primes < 10. These add up to 28 the first entry in the sequence.
-
lista(pmax) = {my(sm = 10, prev = 2, pow = 10); forprime(p = 3, pmax, if(p == prev + 4, sm += (prev + p)); if(p > pow, print1(sm, ", "); pow *= 10); prev = p);} \\ Amiram Eldar, Jul 06 2024
Showing 1-3 of 3 results.
Comments