A080888 Number of compositions into Fibonacci numbers (1 counted as two distinct Fibonacci numbers).
1, 2, 5, 13, 33, 85, 218, 559, 1435, 3682, 9448, 24244, 62210, 159633, 409622, 1051099, 2697145, 6920936, 17759282, 45570729, 116935544, 300059313, 769959141, 1975732973, 5069776531, 13009163899, 33381815615, 85658511370, 219801722429, 564016306267
Offset: 0
Keywords
Examples
a(2) = 5 since 2 = 1+1 = 1+1' = 1'+1 = 1'+1'.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2443 (first 301 terms from T. D. Noe)
Programs
-
Maple
a:= proc(n) option remember; local r, f; if n=0 then 1 else r, f:= 0, [0, 1]; while f[2] <= n do r:= r+a(n-f[2]); f:= [f[2], f[1]+f[2]] od; r fi end: seq(a(n), n=0..35); # Alois P. Heinz, Feb 20 2017
-
Mathematica
a[n_] := a[n] = Module[{r, f}, If[n == 0, 1, {r, f} = {0, {0, 1}}; While[f[[2]] <= n, r = r + a[n - f[[2]]]; f = {f[[2]], f[[1]] + f[[2]]}]; r]]; a /@ Range[0, 35] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
Formula
G.f.: 1/(1-Sum_{k>0} x^Fibonacci(k)).
a(n) ~ c * d^n, where d=2.5660231413698319379867000009313373339800958659676443846860312096..., c=0.7633701399876743973524738479037760170533154734693438061127686049... - Vaclav Kotesovec, May 01 2014