cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080888 Number of compositions into Fibonacci numbers (1 counted as two distinct Fibonacci numbers).

Original entry on oeis.org

1, 2, 5, 13, 33, 85, 218, 559, 1435, 3682, 9448, 24244, 62210, 159633, 409622, 1051099, 2697145, 6920936, 17759282, 45570729, 116935544, 300059313, 769959141, 1975732973, 5069776531, 13009163899, 33381815615, 85658511370, 219801722429, 564016306267
Offset: 0

Views

Author

Vladeta Jovovic, Mar 30 2003

Keywords

Examples

			a(2) = 5 since 2 = 1+1 = 1+1' = 1'+1 = 1'+1'.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local r, f;
          if n=0 then 1 else r, f:= 0, [0, 1];
            while f[2] <= n do r:= r+a(n-f[2]);
              f:= [f[2], f[1]+f[2]]
            od; r
          fi
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 20 2017
  • Mathematica
    a[n_] := a[n] = Module[{r, f}, If[n == 0, 1, {r, f} = {0, {0, 1}}; While[f[[2]] <= n, r = r + a[n - f[[2]]]; f = {f[[2]], f[[1]] + f[[2]]}]; r]];
    a /@ Range[0, 35] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)

Formula

G.f.: 1/(1-Sum_{k>0} x^Fibonacci(k)).
a(n) ~ c * d^n, where d=2.5660231413698319379867000009313373339800958659676443846860312096..., c=0.7633701399876743973524738479037760170533154734693438061127686049... - Vaclav Kotesovec, May 01 2014