A080895 Expansion of the exponential series exp( x R(x) ) = exp((1 + x - sqrt(1 - 2 x - 3x^2))/(2(1 + x))), where R(x) is the ordinary generating series of the Riordan numbers A005043.
1, 1, 1, 7, 49, 541, 7321, 122011, 2390977, 54027289, 1382140081, 39493358191, 1246693438321, 43087256236597, 1618203187947529, 65621724413560771, 2857736621103221761, 133014764141210620081, 6589916027200886776417
Offset: 0
Links
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Crossrefs
Cf. A005043.
Programs
-
Mathematica
a[n_] := (n-1)!*Sum[ ((-1)^(n+k)*Binomial[n, k]* HypergeometricPFQ[ {k/2 + 1/2, k/2, k-n}, {k, k+1}, 4])/(k-1)!, {k, 1, n}]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 20 2011, after Vladimir Kruchinin *)
-
Maxima
a(n):=(n-1)!*sum(sum(binomial(n,j)*binomial(2*j-k-1,j-1)*(-1)^(n-j), j,k,n)/(k-1)!, k,1,n); /* Vladimir Kruchinin, Sep 07 2010 */
Formula
E.g.f.: exp((1 + x - sqrt(1 - 2 x - 3x^2))/(2(1 + x))).
a(n) = (n-1)!*Sum_{k=1..n} ((Sum_{j=k..n} C(n,j)*C(2*j-k-1, j-1)*(-1)^(n-j))/(k-1)!), n > 0. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ sqrt(2)*3^(n + 1/2)*n^(n-1)/(8*exp(n - 1/2)). - Vaclav Kotesovec, Sep 29 2013
From Benedict W. J. Irwin, May 27 2016: (Start)
Let y(0)=1, y(1)=1, y(2)=1/2, y(3)=7/6,
Let -3n*(1+n)*y(n) - (12+20n+8n^2)*y(n+1) - (25+24n+6n^2)*y(n+2)+(n+3)*(n+4)*y(n+4) = 0,
a(n) = n!*y(n).
(End)