cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080895 Expansion of the exponential series exp( x R(x) ) = exp((1 + x - sqrt(1 - 2 x - 3x^2))/(2(1 + x))), where R(x) is the ordinary generating series of the Riordan numbers A005043.

Original entry on oeis.org

1, 1, 1, 7, 49, 541, 7321, 122011, 2390977, 54027289, 1382140081, 39493358191, 1246693438321, 43087256236597, 1618203187947529, 65621724413560771, 2857736621103221761, 133014764141210620081, 6589916027200886776417
Offset: 0

Views

Author

Emanuele Munarini, Mar 31 2003

Keywords

Crossrefs

Cf. A005043.

Programs

  • Mathematica
    a[n_] := (n-1)!*Sum[ ((-1)^(n+k)*Binomial[n, k]* HypergeometricPFQ[ {k/2 + 1/2, k/2, k-n}, {k, k+1}, 4])/(k-1)!, {k, 1, n}]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 20 2011, after Vladimir Kruchinin *)
  • Maxima
    a(n):=(n-1)!*sum(sum(binomial(n,j)*binomial(2*j-k-1,j-1)*(-1)^(n-j), j,k,n)/(k-1)!, k,1,n); /* Vladimir Kruchinin, Sep 07 2010 */

Formula

E.g.f.: exp((1 + x - sqrt(1 - 2 x - 3x^2))/(2(1 + x))).
a(n) = (n-1)!*Sum_{k=1..n} ((Sum_{j=k..n} C(n,j)*C(2*j-k-1, j-1)*(-1)^(n-j))/(k-1)!), n > 0. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ sqrt(2)*3^(n + 1/2)*n^(n-1)/(8*exp(n - 1/2)). - Vaclav Kotesovec, Sep 29 2013
From Benedict W. J. Irwin, May 27 2016: (Start)
Let y(0)=1, y(1)=1, y(2)=1/2, y(3)=7/6,
Let -3n*(1+n)*y(n) - (12+20n+8n^2)*y(n+1) - (25+24n+6n^2)*y(n+2)+(n+3)*(n+4)*y(n+4) = 0,
a(n) = n!*y(n).
(End)