A080936 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and height k (1 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 18, 7, 1, 1, 31, 57, 33, 9, 1, 1, 63, 169, 132, 52, 11, 1, 1, 127, 482, 484, 247, 75, 13, 1, 1, 255, 1341, 1684, 1053, 410, 102, 15, 1, 1, 511, 3669, 5661, 4199, 1975, 629, 133, 17, 1, 1, 1023, 9922, 18579, 16017, 8778, 3366, 912, 168, 19, 1
Offset: 1
Examples
T(3,2)=3 because we have UUDDUD, UDUUDD, and UUDUDD, where U=(1,1) and D=(1,-1). The other two Dyck paths of semilength 3, UDUDUD and UUUDDD, have heights 1 and 3, respectively. - _Emeric Deutsch_, Jun 08 2011 Triangle starts: 1; 1, 1; 1, 3, 1; 1, 7, 5, 1; 1, 15, 18, 7, 1; 1, 31, 57, 33, 9, 1; 1, 63, 169, 132, 52, 11, 1;
References
- N. G. de Bruijn, D. E. Knuth, and S. O. Rice, The average height of planted plane trees, in: Graph Theory and Computing (ed. T. C. Read), Academic Press, New York, 1972, pp. 15-22.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Tomás Aguilar-Fraga, Jennifer Elder, Rebecca E. Garcia, Kimberly P. Hadaway, Pamela E. Harris, Kimberly J. Harry, Imhotep B. Hogan, Jakeyl Johnson, Jan Kretschmann, Kobe Lawson-Chavanu, J. Carlos Martínez Mori, Casandra D. Monroe, Daniel Quiñonez, Dirk Tolson III, and Dwight Anderson Williams II, Interval and L-interval Rational Parking Functions, arXiv:2311.14055 [math.CO], 2023. See p. 11.
- FindStat - Combinatorial Statistic Finder, The height of a Dyck path
- FindStat - Combinatorial Statistic Finder, The height of a Dyck path., The depth of an ordered tree., The depth minus 1 of an ordered tree
- Anthony Joseph and Polyxeni Lamprou, A new interpretation of Catalan numbers, arXiv preprint arXiv:1512.00406 [math.CO], 2015.
- Germain Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationelle, Cahier no. 15, Paris, 1970, pp. 3-41.
- Germain Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
- Kevin Limanta, Hopein Christofen Tang, and Yozef Tjandra, Permutation-generated maps between Dyck paths, arXiv:2105.14439 [math.CO], 2021. Mentions this sequence.
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 13.
- Thomas Tunstall, Tim Rogers, and Wolfram Möbius, Assisted percolation of slow-spreading mutants in heterogeneous environments, arXiv:2303.01579 [q-bio.PE], 2023.
- Vince White, Enumeration of Lattice Paths with Restrictions, (2024). Electronic Theses and Dissertations. 2799. See pp. 19, 25.
Crossrefs
Programs
-
Maple
f := proc (k) options operator, arrow: sum(binomial(k-i, i)*(-z)^i, i = 0 .. floor((1/2)*k)) end proc: h := proc (k) options operator, arrow: z^k/(f(k)*f(k+1)) end proc: T := proc (n, k) options operator, arrow: coeff(series(h(k), z = 0, 25), z, n) end proc: for n to 11 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form Emeric Deutsch, Jun 08 2011 # second Maple program: b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0, `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k))) end: T:= (n, k)-> b(2*n, 0, k) -`if`(k=0, 0, b(2*n, 0, k-1)): seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 06 2012
-
Mathematica
b[x_, y_, k_] := b[x, y, k] = If[y > Min[k, x] || y<0, 0, If[x == 0, 1, b[x-1, y-1, k] + b[x-1, y+1, k]]]; T[n_, k_] := b[2*n, 0, k] - If[k == 0, 0, b[2*n, 0, k-1] ]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *) aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[aot[n],Depth[#]-2==k&]],{n,1,9},{k,1,n-1}] (* Gus Wiseman, Nov 16 2022 *)
Formula
The g.f. for Dyck paths of height k is h(k) = z^k/(f(k)*f(k+1)), where f(k) are Fibonacci type polynomials defined by f(0)=f(1)=1, f(k)=f(k-1)-z*f(k-2) or by f(k) = Sum_{i=0..floor(k/2)} binomial(k-i,i)*(-z)^i. Incidentally, the g.f. for Dyck paths of height at most k is H(k) = f(k)/f(k+1). - Emeric Deutsch, Jun 08 2011
For all n >= 1 and floor((n+1)/2) <= k <= n we have: T(n,k) = 2*(2*k+3)*(2*k^2+6*k+1-3*n)*(2*n)!/((n-k)!*(n+k+3)!). - Gheorghe Coserea, Dec 06 2015
T(n, k) = Sum_{i=1..k-1} (-1)^(i+1) * (Sum_{j=1..n} (Sum_{x=0..n} (-1)^(j+x) * binomial(x+2n-2j+1,x))) * a(k-i); a(1)=1, a(0)=0. - Tim C. Flowers, May 14 2018
Comments