cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080959 Square array of coefficients of binomial polynomials, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 4, 0, 11, 14, 5, -2, 20, 14, 94, 6, -5, 34, -10, 214, 444, 7, -9, 55, -74, 454, 444, 3828, 8, -14, 85, -200, 974, -636, 8868, 25584, 9, -20, 126, -416, 2024, -4236, 21468, 25584, 270576, 10, -27, 180, -756, 3968, -13056, 56748, -55056, 633456, 2342880, 11, -35, 249, -1260, 7308, -31632, 146208, -377616, 1722096, 2342880, 29400480
Offset: 1

Views

Author

Paul Barry, Mar 01 2003

Keywords

Examples

			Array, A(n, k), begin as:
   1,   1,   5,    14,    94,     444,    3828,      25584,     270576, ... A024167;
   2,   1,  11,    14,   214,     444,    8868,      25584,     633456, ... A080958;
   3,   0,  20,   -10,   454,    -636,   21468,     -55056,    1722096, ... ;
   4,  -2,  34,   -74,   974,   -4236,   56748,    -377616,    5471856, ... ;
   5,  -5,  55,  -200,  2024,  -13056,  146208,   -1325136,   16902576, ... ;
   6,  -9,  85,  -416,  3968,  -31632,  348816,   -3695952,   47457072, ... ;
   7, -14, 126,  -756,  7308,  -67032,  766296,   -9004752,  120758832, ... ;
   8, -20, 180, -1260, 12708, -129672, 1563336,  -19925712,  281929392, ... ;
   9, -27, 249, -1974, 21018, -234252, 2993436,  -40917312,  611923392, ... ;
  10, -35, 335, -2950, 33298, -400812, 5431116,  -79073472, 1248697152, ... ;
  11, -44, 440, -4246, 50842, -655908, 9411204, -145250688, 2417424768, ... ;
Antidiagonals, T(n, k), begin as:
   1;
   2,   1;
   3,   1,   5;
   4,   0,  11,    14;
   5,  -2,  20,    14,   94;
   6,  -5,  34,   -10,  214,    444;
   7,  -9,  55,   -74,  454,    444,   3828;
   8, -14,  85,  -200,  974,   -636,   8868,   25584;
   9, -20, 126,  -416, 2024,  -4236,  21468,   25584,  270576;
  10, -27, 180,  -756, 3968, -13056,  56748,  -55056,  633456, 2342880;
  11, -35, 249, -1260, 7308, -31632, 146208, -377616, 1722096, 2342880, 29400480;
		

Crossrefs

Columns: A000027 (k=1), A080956 (k=2), A080957 (k=3).

Programs

  • Magma
    A:= func< n,k | Factorial(k)*(&+[(-1)^(j+1)*Binomial(n+j,j)/j: j in [1..k]]) >;
    A080959:= func< n,k | A(n-k,k) >;
    [A080959(n,k): k in [1..n], n in [0..12]]; // G. C. Greubel, May 11 2025
    
  • Mathematica
    A[n_, k_]:= k!*Sum[(-1)^(j+1)*Binomial[n+j,j]/j, {j,k}];
    A080959[n_, k_]:= A[n-k, k];
    Table[A080959[n,k], {n,0,12}, {k,n}]//Flatten (* G. C. Greubel, May 11 2025 *)
  • SageMath
    def A(n,k): return factorial(k)*sum((-1)^(j+1)*binomial(n+j,j)/j for j in range(1,k+1))
    def A080959(n,k): return A(n-k,k)
    print(flatten([[A080959(n,k) for k in range(1,n+1)] for n in range(13)])) # G. C. Greubel, May 11 2025

Formula

A(n, k) = k!*Sum_{j=1..k} (-1)^(j+1)*binomial(n+j, j)/j (array).
T(n, k) = A(n-k, k) (antidiagonals).