cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080986 Ratios of successive terms of A080984.

Original entry on oeis.org

4, 14, 178, 29506, 824811586, 652329111297234946, 411563898885102610704583389879582466, 164866004502764290755787184747538569374756887082805069905652869331016706
Offset: 1

Views

Author

Hugo Pfoertner, Feb 26 2003

Keywords

Crossrefs

A079269 Define b by b(1) = 1 and for n>1, b(n) = b(n-1)+1/(1+1/b(n-1)); sequence gives numerator of b(n).

Original entry on oeis.org

1, 3, 21, 861, 1275141, 2551762438701, 9546380157472159016030421, 126857284256055227389078067834858327568823447932861
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

The next term is too large to include.

Examples

			The b sequence begins 1, 3/2, 21/10, 861/310, 1275141/363010, 2551762438701/594665194510, ... = a(n)/A079278.
		

Crossrefs

Programs

  • Maple
    b := proc(n) option remember; if n=1 then 1 else b(n-1)+1/(1+1/b(n-1)); fi; end;
  • Mathematica
    nxt[n_]:=n+1/(1+1/n); Numerator/@Nest[Append[#,nxt[Last[#]]]&,{1},10]  (* Harvey P. Dale, Apr 21 2011 *)

Formula

Conjecture: a(m+1) = a(m)^2 + a(m)^3 /(2a(m-1)^2) - a(m)a(m-1)^2/2 for m >= 2. - Leroy Quet

A080985 Define b by b(1) = 1 and for n>1, b(n) = b(n-1)+1/(2+1/b(n-1)); sequence gives denominator of b(n).

Original entry on oeis.org

1, 3, 33, 4785, 118289985, 83574429584465985, 47533348097639173195113266868291585, 17303590888755815609063515462865866934559547198082397287546077959536385
Offset: 1

Views

Author

Hugo Pfoertner, Feb 26 2003

Keywords

Comments

Suggested by Leroy Quet, Feb 26 2003.

Examples

			See under A080984.
		

Crossrefs

Formula

See under A080984.
Showing 1-3 of 3 results.