cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081054 Crossing matchings: linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.

Original entry on oeis.org

1, 0, 1, 4, 31, 288, 3272, 43580, 666143, 11491696, 220875237, 4681264432, 108475235444, 2728591657920, 74051386322580, 2156865088819692, 67113404608820943, 2221948578439255200, 77990056655776149179
Offset: 0

Views

Author

Martin Klazar, Apr 15 2003

Keywords

Examples

			The 4 crossing matchings on nodes 1, 2, ..., 6 are {13, 25, 46}, {14, 25, 36}, {15, 24, 36} and {14, 26, 35}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n]=Module[{x, y, z, i}, y=Sum[a[i]x^i, {i, 0, n-1}]+z*x^n+O[x]^(n+1); Solve[D[y, x]==(-1+y-x^2y^3)/(2x^2y(1+x*y)), z][[1, 1, 2]]]

Formula

The g.f. (a formal power series) F = 1 + x^2 + 4*x^3 + ... satisfies the differential equation F' = (-x^2*F^3 + F - 1)/(2*x^3*F^2 + 2*x^2*F).
a(n) is asymptotic to (2n)!/(e 2^n n!). In other words, the probability that a random matching is a crossing matching is asymptotic to 1/e; see Lemma 3.12 of Stoimenow reference. - Benoit Cloitre, Apr 18 2003; corrected by Dean Hickerson, Apr 21 2003