cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081060 Product of differences of distinct prime factors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 1, 3, 4, 9, 1, 1, 1, 11, 1, 5, 1, 6, 1, 1, 8, 15, 2, 1, 1, 17, 10, 3, 1, 20, 1, 9, 2, 21, 1, 1, 1, 3, 14, 11, 1, 1, 6, 5, 16, 27, 1, 6, 1, 29, 4, 1, 8, 72, 1, 15, 20, 30, 1, 1, 1, 35, 2, 17, 4, 110, 1, 3, 1, 39, 1, 20, 12, 41, 26, 9, 1, 6, 6, 21, 28
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2003

Keywords

Comments

a(n)=1 iff n is 3-smooth (A003586) or n is a prime power (A000961), see A081061;
a(A006881(k)) > 1 for k > 1; if a(n) > 1 then A079275(n) > 0.
From Robert G. Wilson v, Aug 06 2018: (Start)
First occurrence of k, k=1,2,3,... or 0 if impossible: 1, 15, 10, 21, 14, 30, 0, 33, 22, 39, 26, 85, 0, 51, 34, 57, 38, 115, ..., ;
Impossible values: 7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 79, 83, 85, 89, 91, 93, 97, ..., ;
Records: 1, 3, 5, 9, 11, 15, 17, 20, 21, 27, 29, 72, 110, 210, 272, 420, 540, 702, 812, 1190, 1482, 1640, 1980, 2262, 2550, 2592, 3192, 3422, 5280, 5760, 5852, ..., .
(End).

Examples

			a(42) = a(2*3*7) = |2-3|*|2-7|*|3-7| = 1*5*4 = 20.
		

Programs

  • Mathematica
    a[n_] := Times @@ Flatten[Differences@# & /@ Subsets[First@# & /@ FactorInteger@n, {2}]]; Array[a, 90] (* Robert G. Wilson v, Aug 06 2018 *)
  • PARI
    A081060(n) = if(omega(n)<=1,1,my(ps = factor(n)[, 1]~, m=1); for(i=1,(#ps)-1,for(j=i+1,#ps, m *= (ps[j]-ps[i]))); (m)); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = Product(abs(p-q): p, q distinct prime factors of n).