A081067 a(n) = Lucas(4n+2)+2, or 5*Fibonacci(2n+1)^2.
5, 20, 125, 845, 5780, 39605, 271445, 1860500, 12752045, 87403805, 599074580, 4106118245, 28143753125, 192900153620, 1322157322205, 9062201101805, 62113250390420, 425730551631125, 2918000611027445, 20000273725560980
Offset: 0
References
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Programs
-
Maple
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,luc(4*n+2)+2) od: # James Sellers, Mar 05 2003
-
Mathematica
Table[LucasL[4n+2]+2,{n,0,20}] (* or *) Table[5Fibonacci[2n+1]^2,{n,0,30}] (* Harvey P. Dale, Apr 18 2011 *)
-
PARI
a(n)=5*fibonacci(2*n+1)^2 \\ Charles R Greathouse IV, Nov 17 2014
Formula
a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
G.f.: -5*(x^2-4*x+1)/((x-1)*(x^2-7*x+1)). - Colin Barker, Jun 25 2012
a(n) ~ phi^(4n+2). - Charles R Greathouse IV, Nov 17 2014
a(n) = 5*A081068(n). - R. J. Mathar, Feb 13 2016
Comments