cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081079 a(n) = Lucas(4*n+2) - 3 = 5*Fibonacci(2*n)*Fibonacci(2*n+2).

Original entry on oeis.org

0, 15, 120, 840, 5775, 39600, 271440, 1860495, 12752040, 87403800, 599074575, 4106118240, 28143753120, 192900153615, 1322157322200, 9062201101800, 62113250390415, 425730551631120, 2918000611027440, 20000273725560975
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A058038, A092521, A156088.

Programs

  • Magma
    A081079:= func< n | Lucas(4*n+2) -3 >; // G. C. Greubel, Jun 12 2025
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,luc(4*n+2)-3) od: # James Sellers, Mar 05 2003
  • Mathematica
    LinearRecurrence[{8,-8,1}, {0,15,120}, 20] (* Jean-François Alcover, Nov 29 2023 *)
  • SageMath
    def A081079(n): return lucas_number2(4*n+2,1,-1) -3 # G. C. Greubel, Jun 12 2025

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
From R. J. Mathar, Sep 03 2010: (Start)
a(n) = 15*A092521(n) = 5*A058038(n).
G.f.: 15*x/((1-x)*(1-7*x+x^2)). (End)
From G. C. Greubel, Jun 12 2025: (Start)
a(n) = 15*(-1)^n*A156088(n).
E.g.f.: exp(7*x/2)*( 3*cosh(3*sqrt(5)*x/2) - sqrt(5)*sinh(3*sqrt(5)*x/2) ) - 3*exp(x). (End)