A081091 Primes of the form 2^i + 2^j + 1, i > j > 0.
7, 11, 13, 19, 37, 41, 67, 73, 97, 131, 137, 193, 521, 577, 641, 769, 1033, 1153, 2053, 2081, 2113, 4099, 4129, 8209, 12289, 16417, 18433, 32771, 32801, 32833, 40961, 65539, 133121, 147457, 163841, 262147, 262153, 262657, 270337, 524353, 524801
Offset: 1
Examples
7 = 2^2 + 2^1 + 1 11 = 2^3 + 2^1 + 1 13 = 2^3 + 2^2 + 1 19 = 2^4 + 2^1 + 1 37 = 2^5 + 2^2 + 1 41 = 2^5 + 2^3 + 1 67 = 2^6 + 2^1 + 1 73 = 2^6 + 2^3 + 1 97 = 2^6 + 2^5 + 1 131 = 2^7 + 2^1 + 1 137 = 2^7 + 2^3 + 1 193 = 2^7 + 2^6 + 1 521 = 2^9 + 2^3 + 1
Links
- T. D. Noe and Robert Israel, Table of n, a(n) for n = 1..7800 (n = 1..1000 from T. D. Noe)
- Richard Ehrenborg and N. Bradley Fox, The Descent Set Polynomial Revisited, arXiv:1408.6858 [math.CO], 2014.
- Norman B. Fox, Combinatorial Potpourri: Permutations, Products, Posets, and Pfaffians, University of Kentucky, Theses and Dissertations, Mathematics, Paper 25.
Crossrefs
Programs
-
Haskell
a081091 n = a081091_list !! (n-1) a081091_list = filter ((== 1) . a010051') a014311_list -- Reinhard Zumkeller, May 03 2012
-
Maple
N:= 20: # to get all terms < 2^N select(isprime, [seq(seq(2^i+2^j+1,j=1..i-1),i=1..N-1)]); # Robert Israel, May 17 2016
-
Mathematica
Select[Flatten[Table[2^i + 2^j + 1, {i, 21}, {j, i-1}]], PrimeQ] (* Alonso del Arte, Jan 11 2011 *)
-
PARI
do(mx)=my(v=List(),t); for(i=2,mx,for(j=1,i-1,if(ispseudoprime(t=2^i+2^j+1), listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Jan 02 2014
-
PARI
is(n)=hammingweight(n)==3 && isprime(n) \\ Charles R Greathouse IV, Aug 28 2017
-
PARI
A81091=[7]; next_A081091(p, i=exponent(p), j=exponent(p-2^i))=!until(isprime(2^i+2^j+1), j++>=i && i++ && j=1)+2^i+2^j A081091(n)={for(k=#A81091, n-1, A81091=concat(A81091, next_A081091(A81091[k]))); A81091[n]} \\ M. F. Hasler, Mar 03 2023
-
Python
from itertools import count, islice from sympy import isprime from sympy.utilities.iterables import multiset_permutations def A081091_gen(): # generator of terms return filter(isprime,map(lambda s:int('1'+''.join(s)+'1',2),(s for l in count(1) for s in multiset_permutations('0'*(l-1)+'1')))) A081091_list = list(islice(A081091_gen(),30)) # Chai Wah Wu, Jul 19 2022
Formula
A000120(a(n)) = 3.
Comments