A081119 Number of integral solutions to Mordell's equation y^2 = x^3 + n.
5, 2, 2, 2, 2, 0, 0, 7, 10, 2, 0, 4, 0, 0, 4, 2, 16, 2, 2, 0, 0, 2, 0, 8, 2, 2, 1, 4, 0, 2, 2, 0, 2, 0, 2, 8, 6, 2, 0, 2, 2, 0, 2, 4, 0, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 6, 0, 0, 0, 0, 0, 4, 5, 8, 0, 0, 4, 0, 0, 2, 2, 12, 0, 0, 2, 0, 0, 2, 8, 2, 2, 0, 0, 0, 0, 0, 0, 8, 0, 2, 2, 0, 2, 0, 0, 2, 2, 2, 12
Offset: 1
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.
- J. Gebel, A. Petho and H. G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (3) (1998), 335-367.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000 [There were errors in the previous b-file, which had 10000 terms contributed by T. D. Noe and was based on the work of J. Gebel.]
- Michael A. Bennett, Amir Ghadermarzi Mordell's equation: a classical approach. LMS J. Compute. Math. 18 (2015): 633-646. doi:10.1112/S1461157015000182 arXiv:1311.7077
- J. Gebel, Integer points on Mordell curves, web.archive.org copy of the "MORDELL+" file on the SIMATH web site shut down in 2017. [Locally cached copy].
- J. Gebel, A. Pethö and H. G. Zimmer, On Mordell's equation, Compositio Math. 110 (1998), 335-367. (doi:10.1023/A:1000281602647 not working as of July 2024.)
- Joseph H. Silverman, The Arithmetic of Elliptic Curves.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- Wikipedia, Mordell curve.
Programs
-
Mathematica
(* This naive approach gives correct results up to n = 1000 *) xmax[] = 10^4; Do[xmax[n] = 10^5, {n, {297, 377, 427, 885, 899}}]; Do[xmax[n] = 10^6, {n, {225, 353, 618 }}]; f[n] := (x = -Ceiling[n^(1/3)]-1; s = {}; While[x <= xmax[n], x++; y2 = x^3 + n; If[y2 >= 0, y = Sqrt[y2]; If[ IntegerQ[y], AppendTo[s, y]]]]; s); a[n_] := (fn = f[n]; If[fn == {}, 0, 2 Length[fn] - If[First[fn] == 0, 1, 0] ]); Table[an = a[n]; Print["a[", n, "] = ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Oct 18 2011 *)
Extensions
Edited by Max Alekseyev, Feb 06 2021
Comments