cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081140 10th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 30, 600, 10000, 150000, 2100000, 28000000, 360000000, 4500000000, 55000000000, 660000000000, 7800000000000, 91000000000000, 1050000000000000, 12000000000000000, 136000000000000000, 1530000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A011557 (powers of 10).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), this sequence (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [10^n* Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    Table[10^(n-2)*Binomial[n, 2], {n, 0, 30}] (* G. C. Greubel, May 13 2021 *)

Formula

a(n) = 30*a(n-1) - 300*a(n-2) + 1000*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 10^(n-2)*binomial(n, 2).
G.f.: x^2/(1-10*x)^3.
E.g.f.: (x^2/2)*exp(10*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 20 - 180*log(10/9).
Sum_{n>=2} (-1)^n/a(n) = 220*log(11/10) - 20. (End)