A081181 Staircase on Pascal's triangle.
1, 3, 6, 20, 35, 126, 210, 792, 1287, 5005, 8008, 31824, 50388, 203490, 319770, 1307504, 2042975, 8436285, 13123110, 54627300, 84672315, 354817320, 548354040, 2310789600, 3562467300, 15084504396, 23206929840, 98672427616, 151532656696
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Crossrefs
Cf. A065942.
Programs
-
Magma
[Binomial(Floor((n+1)/2)+(n+1), n): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
-
Mathematica
Table[Binomial[Floor[(n + 1) / 2] + (n + 1), n], {n, 0, 30}] (* Vincenzo Librandi, Aug 06 2013 *)
-
SageMath
[binomial(((n+1)//2)+(n+1), n) for n in range(41)] # G. C. Greubel, Jan 14 2024
Formula
a(n) = binomial(floor((n + 1)/2) + (n + 1), n).
Conjecture: 8*n*(n+3)*(1845*n-2882)*a(n) +4*(-5097*n^3+11143*n^2 +42110*n-27416)*a(n-1) +6*(-16605*n^3-7272*n^2-16701*n+9490)*a(n-2) +3*(3*n-5)*(5097*n-949)*(3*n-4)*a(n-3)=0. - R. J. Mathar, Oct 29 2014
Comments