cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081181 Staircase on Pascal's triangle.

Original entry on oeis.org

1, 3, 6, 20, 35, 126, 210, 792, 1287, 5005, 8008, 31824, 50388, 203490, 319770, 1307504, 2042975, 8436285, 13123110, 54627300, 84672315, 354817320, 548354040, 2310789600, 3562467300, 15084504396, 23206929840, 98672427616, 151532656696
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Arrange Pascal's triangle as a square array. a(n) is then a diagonal staircase on the square array. A companion staircase is given by A065942.

Crossrefs

Cf. A065942.

Programs

  • Magma
    [Binomial(Floor((n+1)/2)+(n+1), n): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
    
  • Mathematica
    Table[Binomial[Floor[(n + 1) / 2] + (n + 1), n], {n, 0, 30}] (* Vincenzo Librandi, Aug 06 2013 *)
  • SageMath
    [binomial(((n+1)//2)+(n+1), n) for n in range(41)] # G. C. Greubel, Jan 14 2024

Formula

a(n) = binomial(floor((n + 1)/2) + (n + 1), n).
Conjecture: 8*n*(n+3)*(1845*n-2882)*a(n) +4*(-5097*n^3+11143*n^2 +42110*n-27416)*a(n-1) +6*(-16605*n^3-7272*n^2-16701*n+9490)*a(n-2) +3*(3*n-5)*(5097*n-949)*(3*n-4)*a(n-3)=0. - R. J. Mathar, Oct 29 2014