cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081187 5th binomial transform of (1,0,1,0,1,...), A059841.

Original entry on oeis.org

1, 5, 26, 140, 776, 4400, 25376, 148160, 872576, 5169920, 30757376, 183495680, 1096779776, 6563901440, 39316299776, 235629363200, 1412702437376, 8471919656960, 50814338072576, 304817308958720, 1828628975845376
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of A081187.
a(n) is also the number of words of length n over an alphabet of six letters, of which a chosen one appears an even number of times. See a comment in A007582, also for the crossrefs, for the 1- to 11-letter word cases. - Wolfdieter Lang, Jul 17 2017

Crossrefs

Programs

  • GAP
    List([0..25], n-> (4^n + 6^n)/2); # G. C. Greubel, Dec 26 2019
  • Magma
    [4^n/2 + 6^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
    
  • Maple
    seq( (4^n + 6^n)/2, n=0..25); # G. C. Greubel, Dec 26 2019
  • Mathematica
    CoefficientList[Series[(1-5x)/((1-4x)(1-6x)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{10,-24}, {1,5}, 26] (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    vector(26, n, (4^(n-1) + 6^(n-1))/2) \\ G. C. Greubel, Dec 26 2019
    
  • Sage
    [(4^n + 6^n)/2 for n in (0..25)] # G. C. Greubel, Dec 26 2019
    

Formula

a(n) = 10*a(n-1) - 24*a(n-2) with n > 1, a(0)=1, a(1)=5.
G.f.: (1-5*x)/((1-4*x)*(1-6*x)).
E.g.f.: exp(5*x)*cosh(x).
a(n) = (4^n + 6^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*5^(n-2k).
E.g.f.: exp(5*x)*cosh(x) = (1/2)*E(0), where E(k) = 1 + 2^k/(3^k - 6*x*9^k/(6*x*3^k + (k+1)*2^k/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
a(n) = A074612(n)/2. - G. C. Greubel, Jan 13 2024