A081188 6th binomial transform of (1,0,1,0,1,.....), A059841.
1, 6, 37, 234, 1513, 9966, 66637, 450834, 3077713, 21153366, 146120437, 1013077434, 7042713913, 49054856766, 342163294237, 2389039544034, 16692759230113, 116696726720166, 816114147588037, 5708984335850634
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- Index entries for linear recurrences with constant coefficients, signature (12,-35).
Programs
-
Magma
[5^n/2+7^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
-
Mathematica
CoefficientList[Series[(1 - 6 x) / ((1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{12,-35},{1,6},30] (* Harvey P. Dale, Mar 24 2016 *)
-
PARI
a(n)=5^n/2+7^n/2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 12*a(n-1) -35*a(n-2), a(0)=1, a(1)=6.
G.f.: (1-6*x)/((1-5*x)*(1-7*x)).
E.g.f.: exp(6*x)*cosh(x).
a(n) = 5^n/2 + 7^n/2.
Comments