A081189 7th binomial transform of (1,0,1,0,1,...), A059841.
1, 7, 50, 364, 2696, 20272, 154400, 1188544, 9228416, 72147712, 567104000, 4476365824, 35448129536, 281408253952, 2238205337600, 17827278536704, 142148043309056, 1134363236564992, 9057979233075200, 72362273907933184
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (14,-48).
Programs
-
Magma
[6^n/2 + 8^n/2: n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
-
Mathematica
nn=20;Range[0,nn]!CoefficientList[Series[Exp[7x]Cosh[x],{x,0,nn}],x] (* Geoffrey Critzer, Dec 30 2012 *) LinearRecurrence[{14, -48}, {1, 7}, 20] (* Or *) CoefficientList[Series[(1 - 7 x)/(1 - 14 x + 48 x^2), {x, 0, 19}], x] (* Robert G. Wilson v, Jan 02 2013 *)
Formula
a(n) = 14*a(n-1) - 48*a(n-2) with n > 1, a(0)=1, a(1)=7.
G.f.: (1-7*x)/((1-6*x)*(1-8*x)).
E.g.f. exp(7*x)*cosh(x).
a(n) = 6^n/2 + 8^n/2.
a(n) = 6*a(n-1) + 8^(n-1).
Comments