cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081189 7th binomial transform of (1,0,1,0,1,...), A059841.

Original entry on oeis.org

1, 7, 50, 364, 2696, 20272, 154400, 1188544, 9228416, 72147712, 567104000, 4476365824, 35448129536, 281408253952, 2238205337600, 17827278536704, 142148043309056, 1134363236564992, 9057979233075200, 72362273907933184
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of A081188.
a(n) is the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8} with an even number of elements mapped to 1. - Geoffrey Critzer, Dec 30 2012
For the alternative formulation in terms of words of length n over an alphabet of eight letters with a chosen letter appearing an even number of times see a comment in A007582, also for the crossrefs, for the 1- to 11- letter word cases. - Wolfdieter Lang, Jul 17 2017

Crossrefs

Programs

  • Magma
    [6^n/2 + 8^n/2: n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[7x]Cosh[x],{x,0,nn}],x]  (* Geoffrey Critzer, Dec 30 2012 *)
    LinearRecurrence[{14, -48}, {1, 7}, 20] (* Or *)
    CoefficientList[Series[(1 - 7 x)/(1 - 14 x + 48 x^2), {x, 0, 19}], x] (* Robert G. Wilson v, Jan 02 2013 *)

Formula

a(n) = 14*a(n-1) - 48*a(n-2) with n > 1, a(0)=1, a(1)=7.
G.f.: (1-7*x)/((1-6*x)*(1-8*x)).
E.g.f. exp(7*x)*cosh(x).
a(n) = 6^n/2 + 8^n/2.
a(n) = 6*a(n-1) + 8^(n-1).