cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081203 9th binomial transform of (0,1,0,1,0,1,.....), A000035.

Original entry on oeis.org

0, 1, 18, 244, 2952, 33616, 368928, 3951424, 41611392, 432891136, 4463129088, 45705032704, 465640261632, 4725122093056, 47800976744448, 482407813955584, 4859262511644672, 48874100093157376, 490992800745259008
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of A081202.
From Wolfdieter Lang, Jul 17 2017: (Start)
For a combinatorial interpretation of a(n) with special 10-letter words of length n see the comment in A081200 on the 7-letter analog.
The binomial transform of {a(n)}_{n >= 0} is {0, A016190}, the 11-letter analog.
(End)

Crossrefs

Apart from the first term, identical to A016186.

Programs

  • Magma
    [10^n/2 - 8^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[x / ((1 - 8 x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{18,-80},{0,1},20] (* Harvey P. Dale, Aug 05 2018 *)

Formula

a(n) = 18*a(n-1)-80*a(n-2), a(0)=0, a(1)=1.
G.f.: x/((1-8*x)*(1-10*x)).
a(n) = 10^n/2 - 8^n/2.