cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081207 Main diagonal of number square A081206.

Original entry on oeis.org

1, 2, 3, 7, 16, 37, 89, 216, 529, 1307, 3248, 8111, 20339, 51176, 129143, 326717, 828374, 2104361, 5354979, 13647682, 34830191, 89000157, 227674188, 583017657, 1494365341, 3833592212, 9842373849, 25287895051, 65016153154, 167264946727
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Floor[(n+k)/2],k]^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 02 2011 *)
    CoefficientList[Series[(1+x)/Sqrt[1-2x-x^2-2x^3+x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, (binomial(floor((n+k)/2), k))^2), ", ")) \\ G. C. Greubel, Feb 16 2017
    
  • PARI
    x='x+O('x^25); Vec((1+x)/sqrt(1-2*x-x^2-2*x^3+x^4)) \\ G. C. Greubel, Feb 16 2017

Formula

a(n) = Sum_{k=0..n} (binomial(floor((n+k)/2), k))^2.
G.f.: (1+x)/sqrt(1-2x-x^2-2x^3+x^4) - Paul Barry, Jun 04 2005
Conjecture: n*(n-2)*a(n) +(-2*n^2+5*n-1)*a(n-1) +(-n^2+3*n-4)*a(n-2) +(-2*n^2+7*n-4)*a(n-3) +(n-1)*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 12 2012
a(n) ~ (5-sqrt(5)) * ((3+sqrt(5))/2)^n / (2*sqrt(14*sqrt(5)-30) * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014
Equivalently, a(n) ~ 5^(1/4) * phi^(2*n + 1) / (2 * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021