cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A131072 Numbers m such that A081211(m) <> A081213(m).

Original entry on oeis.org

84, 336, 420, 924, 1092, 1428, 1452, 1596, 1680, 1840, 1932, 2057, 2100, 2436, 2604, 2625, 2632, 2961, 3000, 3108, 3384, 3444, 3468, 3500, 3528, 3612, 3696, 3948, 4114, 4368, 4452, 4500, 4620, 4956, 5124, 5250, 5376, 5460, 5520, 5544, 5628, 5712, 5808
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2007

Keywords

Comments

Subsequence of A013929;
A081212(a(n)) > 2; A081211(a(n)) <> A081213(a(n));
suggested by Andrew S. Plewe regarding the equality of initial terms of A081211 and A081213.

A081210 In prime factorization of n replace each prime power p^e with the greatest squarefree number <= p^e.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 9, 13, 14, 15, 15, 17, 14, 19, 15, 21, 22, 23, 21, 23, 26, 26, 21, 29, 30, 31, 31, 33, 34, 35, 21, 37, 38, 39, 35, 41, 42, 43, 33, 35, 46, 47, 45, 47, 46, 51, 39, 53, 52, 55, 49, 57, 58, 59, 45, 61, 62, 49, 62, 65, 66, 67, 51, 69, 70, 71, 49, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2003

Keywords

Crossrefs

Programs

  • Maple
    A081210 := proc(n)
        local a,pe;
        a :=1 ;
        for pe in ifactors(n)[2] do
            a := a*A070321(op(1,pe)^op(2,pe)) ;
        end do:
        a ;
    end proc:
    seq(A081210(n),n=1..100) ; # R. J. Mathar, May 25 2023
  • Mathematica
    gsf[n_] := For[k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; a[n_] := Times @@ gsf /@ Power @@@ FactorInteger[n]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Mar 27 2013 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i,1], my(k = f[i,1]^f[i,2]); while(!issquarefree(k), k--); k));} \\ Amiram Eldar, Jun 09 2025

Formula

Multiplicative with a(p^e) = A070321(p^e), p prime.
a(n) <= n and a(n) = n iff n is squarefree (A005117).
A081211(n) = a(a(n)), see A081212, A081213 and A081214 for iterations until a fixed point is reached.

A081212 Let r(n,k) = if k=0 then n else r(A081210(n),k-1), then a(n) = Min{i:r(n,i) = r(n,i+1)}.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2003

Keywords

Comments

Number of times A081210 is to be applied to n until a fixed-point is reached, A081213(n)=r(n,a(n)).
A081211(n) = A081213(n) iff a(n) <= 2; a(A131072(n)) > 2. - Reinhard Zumkeller, Jun 13 2007

Programs

  • Mathematica
    gsf[n_] := For[k = n, True, k--, If[SquareFreeQ[k], Return[k]]];
    A081210[n_] := Times @@ gsf /@ Power @@@ FactorInteger[n];
    a[n_] := Module[{cnt = 0}, FixedPoint[(cnt++; A081210[#])&, n]; cnt-1];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Mar 27 2013, updated Nov 27 2023 *)

A081213 Let r(n,k) = if k=0 then n, else r(A081210(n),k-1), then a(n)=r(n, A081212(n)).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 7, 13, 14, 15, 15, 17, 14, 19, 15, 21, 22, 23, 21, 23, 26, 26, 21, 29, 30, 31, 31, 33, 34, 35, 21, 37, 38, 39, 35, 41, 42, 43, 33, 35, 46, 47, 35, 47, 46, 51, 39, 53, 39, 55, 47, 57, 58, 59, 35, 61, 62, 47, 62, 65, 66, 67, 51, 69, 70, 71, 47, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2003

Keywords

Comments

A081210(a(n)) = a(n).
Different from A081211.
a(n) = A081211(n) for n<84 = A131072(1); a(A131072(n)) <> A081211(A131072(n)). - Reinhard Zumkeller, Jun 13 2007

Crossrefs

Programs

  • Maple
    A081212r := proc(n,k)
        option remember ;
        if k =0 then
            n;
        else
            procname(A081210(n),k-1) ;
        end if;
    end proc:
    A081212 := proc(n)
        local i ;
        for i from 0 do
            if A081212r(n,i) = A081212r(n,i+1) then
                return i ;
            end if;
        end do:
    end proc:
    A081213 := proc(n)
        A081212r(n,A081212(n)) ;
    end proc:
    seq(A081213(n),n=1..84) ; # R. J. Mathar, May 25 2023
  • Mathematica
    gsf[n_] := For[k = n, True, k--, If[SquareFreeQ[k], Return[k]]];
    A081210[n_] := (cnt++; Times @@ gsf /@ Power @@@ FactorInteger[n]);
    A081212[n_] := (cnt = 0; FixedPoint[A081210, n]; cnt - 1);
    r[n_, k_] := r[n, k] = If[k == 0, n, r[A081210[n], k - 1]];
    a[n_] := r[n, A081212[n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Sep 12 2023 *)
Showing 1-4 of 4 results.