A081215 a(n) = (n^(n+1)+(-1)^n)/(n+1)^2.
1, 0, 1, 5, 41, 434, 5713, 90075, 1657009, 34867844, 826446281, 21794641505, 633095889817, 20088655029078, 691413758034721, 25657845139503479, 1021273028302258913, 43404581642184336392, 1961870762757168078553
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..387
- Mathew Englander, Comments on OEIS A081215
Programs
-
Maple
seq((j^(j+1)+(-1)^j)/(j+1)^2, j=0..50); # Robert Israel, May 19 2016
-
Mathematica
Array[(#^(# + 1) + (-1)^#)/(# + 1)^2 &, 19, 0] (* Michael De Vlieger, Nov 13 2020 *)
-
PARI
a(n) = (n^(n+1)+(-1)^n)/(n+1)^2; \\ Michel Marcus, Oct 20 2020
Formula
a(n) = (-1)^n + Sum_{k=1..n} (-1)^(k+1)*(n+1)^(n-k)*C(n+1,n+2-k). - Gionata Neri, May 19 2016
E.g.f.: (Ei(1,x) - Ei(1,-LambertW(-x)))/x. - Robert Israel, May 19 2016
For n > 1, a(n) = Sum_{k=1..floor(n/2)} (n^(n-2*k) * (2*k/n + n - 2*k)). - Mathew Englander, Oct 19 2020
Comments