cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081275 Shallow diagonal of triangular spiral in A051682.

Original entry on oeis.org

1, 31, 97, 199, 337, 511, 721, 967, 1249, 1567, 1921, 2311, 2737, 3199, 3697, 4231, 4801, 5407, 6049, 6727, 7441, 8191, 8977, 9799, 10657, 11551, 12481, 13447, 14449, 15487, 16561, 17671, 18817, 19999, 21217, 22471, 23761, 25087, 26449, 27847, 29281, 30751, 32257
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Reflection of A060544 in the horizontal A051682.
Binomial transform of (1, 30, 36, 0, 0, 0, ...).

Crossrefs

Programs

  • Mathematica
    Table[30Binomial[n,1]+36Binomial[n,2]+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,31,97},40] (* Harvey P. Dale, Jun 30 2011 *)
    CoefficientList[Series[(1 + 28 x + 7 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
  • PARI
    a(n)=18*n^2+12*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = C(n,0) + 30*C(n,1) + 36*C(n,2).
a(n) = 18*n^2 + 12*n + 1.
G.f.: (1 + 28*x + 7*x^2)/(1-x)^3.
a(0)=1, a(1)=31, a(2)=97, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 30 2011
E.g.f.: exp(x)*(1 + 30*x + 18*x^2). - Elmo R. Oliveira, Nov 13 2024