A081275 Shallow diagonal of triangular spiral in A051682.
1, 31, 97, 199, 337, 511, 721, 967, 1249, 1567, 1921, 2311, 2737, 3199, 3697, 4231, 4801, 5407, 6049, 6727, 7441, 8191, 8977, 9799, 10657, 11551, 12481, 13447, 14449, 15487, 16561, 17671, 18817, 19999, 21217, 22471, 23761, 25087, 26449, 27847, 29281, 30751, 32257
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[30Binomial[n,1]+36Binomial[n,2]+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,31,97},40] (* Harvey P. Dale, Jun 30 2011 *) CoefficientList[Series[(1 + 28 x + 7 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
-
PARI
a(n)=18*n^2+12*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = C(n,0) + 30*C(n,1) + 36*C(n,2).
a(n) = 18*n^2 + 12*n + 1.
G.f.: (1 + 28*x + 7*x^2)/(1-x)^3.
a(0)=1, a(1)=31, a(2)=97, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 30 2011
E.g.f.: exp(x)*(1 + 30*x + 18*x^2). - Elmo R. Oliveira, Nov 13 2024
Comments