A081280 Binomial transform of Chebyshev coefficients A006974.
1, 10, 69, 398, 2057, 9858, 44685, 194022, 813969, 3319866, 13224789, 51635070, 198148761, 749016882, 2794021533, 10300389462, 37575535905, 135782112618, 486470994021, 1729358969454, 6104068084521, 21404982017250, 74609825192109
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-90,270,-405,243).
Programs
-
Magma
[(n^4+24*n^3+164*n^2+378*n+243)*3^(n-5): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
-
Mathematica
CoefficientList[Series[(1 - 2 x) (1 - x)^3 / (1 - 3 x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{15,-90,270,-405,243},{1,10,69,398,2057},30] (* Harvey P. Dale, May 05 2019 *)
Formula
a(n) = (n^4+24*n^3+164*n^2+378*n+243) * 3^(n-5).
a(n) = 15*a(n-1) -90*a(n-2) +270a*(n-3) -405*a(n-4) +243*a(n-5).
G.f.: (1-2*x)*(1-x)^3/(1-3*x)^5.