cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081290 a(0) = 0, and for n >=1, a(n) = the largest Catalan number <= n.

Original entry on oeis.org

0, 1, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42
Offset: 0

Views

Author

Antti Karttunen, Mar 17 2003

Keywords

Comments

After n>0, A000108(n) occurs A000245(n) times.
For all n>0, a(A000108(n)) = A000108(n) [the first occurrence of the n-th Catalan number in this sequence].
Minimal i such that A081289(i) >= A081289(n) [the original definition of the sequence].
In other words, the first position k in A081289 where A081289(n) occurs (the minimal k such that A081289(k) = A081289(n)), and also the first position k in A081288 where A081288(n) occurs (the minimal k such that A081288(k) = A081288(n)). The starting point of the run which contains the n-th term in those sequences.

Crossrefs

Programs

  • Mathematica
    Join[{0},With[{catnos=Reverse[CatalanNumber[Range[10]]]},Table[ SelectFirst[ catnos,#<=n&],{n,80}]]] (* This program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, Jul 27 2014 *)

Formula

a(0) = 0, a(n) = A000108(A081288(n)-1).
Sum_{n>=1} 1/a(n)^2 = 44*Pi/sqrt(3) - 4*Pi^2 - 38. - Amiram Eldar, Aug 18 2022

Extensions

Name changed by Antti Karttunen, Apr 26 2014