A081309 Smallest prime p such that n-p is a 3-smooth number, a(n)=0 if no such prime exists.
0, 0, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 5, 2, 3, 7, 5, 2, 3, 2, 3, 13, 5, 23, 7, 2, 3, 19, 2, 3, 7, 5, 17, 2, 3, 0, 5, 2, 3, 13, 5, 41, 7, 17, 13, 19, 11, 47, 13, 2, 3, 43, 5, 53, 7, 2, 3, 31, 5, 59, 7, 53, 31, 37, 11, 2, 3, 41, 5, 43, 7, 71, 19, 2, 3, 67, 5, 0, 7, 53, 17, 73, 2, 3, 13, 5, 23, 7, 17, 89
Offset: 1
Examples
a(25)=7: 25=7+2*3^2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a081309 n | null ps = 0 | otherwise = head ps where ps = [p | p <- takeWhile (< n) a000040_list, a065333 (n - p) == 1] -- Reinhard Zumkeller, Jul 04 2012
-
Mathematica
smooth3Q[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1; a[n_] := Module[{p}, For[p = 2, p < n, p = NextPrime[p], If[smooth3Q[n - p], Return[p]]]; 0]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 14 2021 *)
Formula
a(n)=0 iff A081308(n)=0.