A081308 Number of ways to write n as sum of a prime and an 3-smooth number.
0, 0, 1, 2, 2, 3, 2, 3, 3, 2, 4, 2, 3, 4, 4, 2, 3, 2, 5, 4, 5, 2, 5, 1, 5, 3, 4, 1, 6, 2, 5, 4, 3, 3, 7, 0, 5, 4, 5, 3, 5, 1, 6, 3, 5, 3, 6, 1, 7, 4, 4, 1, 6, 1, 8, 4, 3, 1, 7, 1, 7, 3, 4, 2, 8, 1, 7, 3, 5, 3, 7, 1, 6, 4, 7, 2, 10, 0, 8, 3, 3, 2, 9, 2, 9, 3, 4, 3, 6, 1, 9, 3, 3, 2, 9, 0, 5, 5, 4, 3, 8, 1, 7, 3, 6
Offset: 1
Keywords
Examples
a(12)=2: 12=11+1=3+3^2; a(13)=3: 13=11+2=7+2*3=5+2^3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Mark Underwood, another goldbachian theme, Mar. 16, 2009 and follow-up on Oct. 21, 2011.
- Mark Underwood and others, Another goldbachian theme, digest of 64 messages in primenumbers Yahoo group, Mar 16, 2009 - Oct 30, 2011. [Cached copy]
Programs
-
Haskell
a081308 n = sum $ map (a010051' . (n -)) $ takeWhile (< n) a003586_list -- Reinhard Zumkeller, Jul 04 2012
-
Mathematica
nmax = 1000; S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3&]; a[n_] := Count[TakeWhile[S, #
Jean-François Alcover, Oct 13 2021 *) -
PARI
A081308(n)=my(L2=log(2));sum(e3=0,log(n+.5)\log(3), sum(e2=0,log(n\3^e3)\L2, isprime(n-(3^e3)<
M. F. Hasler, Oct 21 2011
Comments