cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081311 Numbers that can be written as sum of a prime and an 3-smooth number.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 17 2003

Keywords

Comments

A081308(a(n))>0; complement of A081310.
Up to 10^n this sequence has 8, 95, 916, 8871, 86974, 858055, 8494293, 84319349, 838308086, ... terms. The lower density is of this sequence is greater than 0.59368 (see Pintz), but seems to be less than 1; can this be proved? Charles R Greathouse IV, Sep 01 2015

Crossrefs

A118955 is a subsequence.
Union of A081312 and A081313.

Programs

  • Haskell
    a081310 n = a081310_list !! (n-1)
    a081310_list = filter ((== 0) . a081308) [1..]
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Mathematica
    nmax = 1000;
    S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &];
    A081308[n_] := Count[TakeWhile[S, # < n &], s_ /; PrimeQ[n - s]];
    Select[Range[nmax], A081308[#] > 0 &] (* Jean-François Alcover, Oct 13 2021 *)
  • PARI
    is(n)=for(i=0, logint(n,3), my(k=3^i); while(kCharles R Greathouse IV, Sep 01 2015

A081310 Numbers having no representation as sum of a prime and an 3-smooth number.

Original entry on oeis.org

1, 2, 36, 78, 96, 120, 126, 144, 156, 162, 186, 204, 210, 216, 222, 276, 288, 300, 306, 324, 328, 330, 336, 342, 366, 372, 378, 396, 408, 414, 426, 438, 456, 474, 486, 498, 516, 528, 534, 540, 546, 552, 562, 576, 582, 606, 612, 624, 630, 636, 666, 672, 690
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 17 2003

Keywords

Comments

Complement of A081311.

Examples

			For all primes p<36 the greatest prime factor of 36-p is >3: 36-2=2*17, 36-3=3*11, 36-5=31, 36-7=29, 36-11=5*5, 36-13=23, 36-17=19, 36-19=17, 36-23=13, 36-29=7, 36-31=5, therefore 36 is a term.
		

Crossrefs

Programs

  • Haskell
    a081310 n = a081310_list !! (n-1)
    a081310_list = filter ((== 0) . a081308) [1..]
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    nmax = 1000;
    S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &];
    A081308[n_] := Count[TakeWhile[S, # < n &], s_ /; PrimeQ[n - s]];
    Select[Range[nmax], A081308[#] == 0 &] (* Jean-François Alcover, Oct 13 2021 *)

Formula

A081308(a(n)) = 0.

A081312 Numbers having a unique representation as sum of a prime and an 3-smooth number.

Original entry on oeis.org

3, 24, 28, 42, 48, 52, 54, 58, 60, 66, 72, 90, 102, 108, 114, 132, 138, 150, 168, 172, 174, 180, 192, 196, 198, 214, 228, 234, 240, 246, 252, 264, 268, 270, 282, 294, 298, 312, 318, 348, 354, 360, 384, 390, 402, 404, 420, 432, 444, 450, 462, 468, 478, 480, 492
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 17 2003

Keywords

Crossrefs

Subsequence of A081311.

Programs

  • Haskell
    a081312 n = a081312_list !! (n-1)
    a081312_list = filter ((== 1) . a081308) [1..]
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    sp3sQ[n_]:=Length[Select[IntegerPartitions[n,{2}],(PrimeQ[#[[1]]]&&Max[ FactorInteger[#[[2]]][[All,1]]]<4)||(PrimeQ[#[[2]]]&&Max[ FactorInteger[ #[[1]]][[All,1]]]<4)&]]==1; Select[Range[500],sp3sQ]/.(5->Nothing) (* Harvey P. Dale, Feb 05 2019 *)
    nmax = 1000;
    S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &];
    A081308[n_] := Count[TakeWhile[S, # < n &], s_ /; PrimeQ[n - s]];
    Select[Range[nmax], A081308[#] == 1 &] (* Jean-François Alcover, Oct 13 2021 *)

Formula

A081308(a(n)) = 1.

A081313 Numbers having more than one representation as sum of a prime and a 3-smooth number.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 17 2003

Keywords

Crossrefs

Subsequence of A081311.

Programs

  • Haskell
    a081313 n = a081313_list !! (n-1)
    a081313_list = filter ((> 1) . a081308) [1..]
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    nmax = 1000;
    S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &];
    A081308[n_] := Count[TakeWhile[S, # < n &], s_ /; PrimeQ[n - s]];
    Select[Range[nmax], A081308[#] > 1 &] (* Jean-François Alcover, Oct 13 2021 *)

Formula

A081308(a(n)) > 1.

A081309 Smallest prime p such that n-p is a 3-smooth number, a(n)=0 if no such prime exists.

Original entry on oeis.org

0, 0, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 5, 2, 3, 7, 5, 2, 3, 2, 3, 13, 5, 23, 7, 2, 3, 19, 2, 3, 7, 5, 17, 2, 3, 0, 5, 2, 3, 13, 5, 41, 7, 17, 13, 19, 11, 47, 13, 2, 3, 43, 5, 53, 7, 2, 3, 31, 5, 59, 7, 53, 31, 37, 11, 2, 3, 41, 5, 43, 7, 71, 19, 2, 3, 67, 5, 0, 7, 53, 17, 73, 2, 3, 13, 5, 23, 7, 17, 89
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 17 2003

Keywords

Examples

			a(25)=7: 25=7+2*3^2.
		

Crossrefs

Programs

  • Haskell
    a081309 n | null ps   = 0
              | otherwise = head ps
              where ps = [p | p <- takeWhile (< n) a000040_list,
                              a065333 (n - p) == 1]
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    smooth3Q[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1;
    a[n_] := Module[{p}, For[p = 2, p < n, p = NextPrime[p], If[smooth3Q[n - p], Return[p]]]; 0];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 14 2021 *)

Formula

a(n)=0 iff A081308(n)=0.
Showing 1-5 of 5 results.