cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081324 Twice a square but not the sum of 2 distinct squares.

Original entry on oeis.org

0, 2, 8, 18, 32, 72, 98, 128, 162, 242, 288, 392, 512, 648, 722, 882, 968, 1058, 1152, 1458, 1568, 1922, 2048, 2178, 2592, 2888, 3528, 3698, 3872, 4232, 4418, 4608, 4802, 5832, 6272, 6498, 6962, 7688, 7938, 8192, 8712, 8978, 9522, 10082, 10368, 11552
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Conjecture: for n>1 this is A050804.
From Altug Alkan, Apr 12 2016: (Start)
Conjecture is true. Proof :
If n = a^2 + b^2, where a and b are nonzero integers, then n^3 = (a^2 + b^2)^3 = A^2 + B^2 = C^2 + D^2 where;
A = 2*a^2*b + (a^2-b^2)*b = 3*a^2*b - b^3,
B = 2*a*b^2 - (a^2-b^2)*a = 3*a*b^2 - a^3,
C = 2*a*b^2 + (a^2-b^2)*a = 1*a*b^2 + a^3,
D = 2*a^2*b - (a^2-b^2)*b = 1*a^2*b + b^3.
Obviously, A, B, C, D are always nonzero because a and b are nonzero integers. Additionally, if a^2 is not equal to b^2, then (A, B) and (C, D) are distinct pairs, that is, n^3 can be expressible as a sum of two nonzero squares more than one way. Since we know that n is a sum of two nonzero squares if and only if n^3 is a sum of two nonzero squares (see comment section of A000404); if n^3 is the sum of two nonzero squares in exactly one way, n must be a^2 + b^2 with a^2 = b^2 and n is the sum of two nonzero squares in exactly one way. That is the definition of this sequence, so this sequence is exactly A050804 except "0" that is the first term of this sequence. (End) [Edited by Altug Alkan, May 14 2016]
Conjecture: sequence consists of numbers of form 2*k^2 such that sigma(2*k^2)==3 (mod 4) and k is not divisible by 5.
The reason of related observation is that 5 is the least prime of the form 4*m+1. However, counterexamples can be produced. For example 57122 = 2*169^2 and sigma(57122) == 3 (mod 4) and it is not divisible by 5. - Altug Alkan, Jun 10 2016
For n > 0, this sequence lists numbers n such that n is the sum of two nonzero squares while n^2 is not. - Altug Alkan, Apr 11 2016
2*k^2 where k has no prime factor == 1 (mod 4). - Robert Israel, Jun 10 2016

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a081324 n = a081324_list !! (n-1)
    a081324_list = 0 : elemIndices 1 a063725_list
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Maple
    map(k -> 2*k^2, select(k -> andmap(t -> t[1] mod 4 <> 1, ifactors(k)[2]), [$0..100])); # Robert Israel, Jun 10 2016
  • Mathematica
    Select[ Range[0, 12000], MatchQ[ PowersRepresentations[#, 2, 2], {{n_, n_}}] &] (* Jean-François Alcover, Jun 18 2013 *)
  • PARI
    concat([0,2],apply(n->2*n^2, select(n->vecmin(factor(n)[, 1]%4)>1, vector(100,n,n+1)))) \\ Charles R Greathouse IV, Jun 18 2013

Formula

A063725(a(n)) = 1. [Reinhard Zumkeller, Aug 17 2011]
a(n) = 2*A004144(n-1)^2 for n > 1. - Charles R Greathouse IV, Jun 18 2013

Extensions

a(19)-a(45) from Donovan Johnson, Nov 15 2009
Offset corrected by Reinhard Zumkeller, Aug 17 2011