A081347 First column in maze arrangement of natural numbers.
1, 2, 3, 12, 13, 30, 31, 56, 57, 90, 91, 132, 133, 182, 183, 240, 241, 306, 307, 380, 381, 462, 463, 552, 553, 650, 651, 756, 757, 870, 871, 992, 993, 1122, 1123, 1260, 1261, 1406, 1407, 1560, 1561, 1722, 1723, 1892, 1893, 2070, 2071, 2256, 2257, 2450, 2451
Offset: 0
Examples
Starting with 1,2,3, turn (LL) and then repeat (RRR)(LLL) to get 1 6 7 20 2 5 8 19 3 4 9 18 12 11 10 17
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[((1+2*n^2)+(1-2*n)*(-1)^n)/2: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
-
Mathematica
CoefficientList[Series[(1 + x - x^2 + 7 x^3) / ((1 - x)^3 (1 + x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 08 2013 *) LinearRecurrence[{1,2,-2,-1,1},{1,2,3,12,13},60] (* Harvey P. Dale, Aug 13 2025 *)
Formula
a(n) = ((1+2*n^2)+(1-2*n)*(-1)^n)/2.
a(2n) = A054554(n).
a(2n+1) = 2*A000384(n).
G.f.: (1+x-x^2+7*x^3)/((1-x)^3*(1+x)^2). [Colin Barker, Apr 17 2012]
Comments