A081373 Number of values of k, 1 <= k <= n, with phi(k) = phi(n), where phi is Euler totient function, A000010.
1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 4, 1, 4, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 3, 2, 1, 5, 1, 3, 1, 6, 1, 7, 1, 4, 3, 5, 2, 8, 1, 4, 1, 4, 1, 9, 1, 3, 1, 5, 1, 10, 2, 2, 3, 2, 3, 5, 1, 4, 4, 6
Offset: 1
Keywords
Examples
For n = 16: phi(k) = {1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8} for k = 1,...,n; 2 numbers exist with phi(k) = phi(n) = 8: {15,16}, so a(16) = 2. If n = p is an odd prime number, then a(p) = 1 with phi(k) = p-1.
Links
- Paul Tek, Table of n, a(n) for n = 1..100000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Crossrefs
Programs
-
Mathematica
f[x_] := Count[Table[EulerPhi[j]-EulerPhi[x], {j, 1, x}], 0] Table[f[w], {w, 1, 100}]
-
PARI
a(n)=my(t=eulerphi(n), s); sum(k=1, n, eulerphi(k)==t) \\ Charles R Greathouse IV, Feb 21 2013, corrected by Antti Karttunen, Aug 26 2024
-
PARI
a(n) = #select(x -> x <= n, invphi(eulerphi(n))); \\ Amiram Eldar, Nov 08 2024, using Max Alekseyev's invphi.gp
Comments