A081380 Numbers k such that the sets of prime factors (ignoring multiplicity) of A000203(k) = sigma(k) and of A001157(k) = sigma_2(k) are identical.
1, 180, 1444, 12996, 23805, 36100, 52020, 60228, 64980, 68832, 95220, 301140, 324900, 344160, 481824, 1505700, 1718721, 1720800, 2275758, 2409120, 3755844, 6874884, 6879645, 7965153, 8593605, 11378790, 12045600, 15930306, 17405892
Offset: 1
Keywords
Examples
n = 1444 = 2^2*19^2, sigma(1444) = 2667 = 3*7*127, sigma_2(1444) = 2744343 = 3^2*7^4*127, common factor set = {3,7,127}.
References
- Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris, 2008.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100 (terms 1..67 from Donovan Johnson)
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; Do[s=ba[DivisorSigma[1, n]]; s5=ba[DivisorSigma[2, n]]; If[Equal[s, s5], Print[n]], {n, 1, 1000000}]
-
PARI
is(n)=factor(sigma(n))[,1]==factor(sigma(n,2))[,1] \\ Charles R Greathouse IV, Feb 19 2013
Extensions
More terms from Lekraj Beedassy, Jul 18 2008
a(16)-a(29) from Donovan Johnson, May 24 2009