A081389 Number of non-unitary prime divisors of Catalan numbers, i.e., number of those prime factors whose exponent is greater than one.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 1, 3, 3, 3, 2, 4, 4, 4, 4, 2, 2, 3, 1, 1, 2, 2, 3, 2, 3, 3, 2, 4, 4, 2, 2, 2, 2, 3, 4, 5, 4, 3, 2, 2, 2, 2, 2, 2, 3
Offset: 1
Keywords
Examples
For n=25: Catalan(25) = binomial(50,25)/26 = 4861946401452 =(2*2*3*3*7*7)*29*31*37*41*43*47; unitary prime divisors: {29,31,37,41,43,47}; non-unitary prime divisors: {2,3,7}, so a(25) = 3.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Boole[n == 1] + PrimeNu@ # - Count[Transpose[FactorInteger@ #][[2]], 1] &@ CatalanNumber@ n, {n, 105}] (* Michael De Vlieger, Feb 25 2017, after Harvey P. Dale at A056169 *)
-
PARI
catalan(n) = binomial(2*n, n)/(n+1); nbud(n) = #select(x->x!=1, factor(n)[,2]); a(n) = nbud(catalan(n)); \\ Michel Marcus, Feb 26 2017