cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081389 Number of non-unitary prime divisors of Catalan numbers, i.e., number of those prime factors whose exponent is greater than one.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 1, 3, 3, 3, 2, 4, 4, 4, 4, 2, 2, 3, 1, 1, 2, 2, 3, 2, 3, 3, 2, 4, 4, 2, 2, 2, 2, 3, 4, 5, 4, 3, 2, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			For n=25: Catalan(25) = binomial(50,25)/26 = 4861946401452 =(2*2*3*3*7*7)*29*31*37*41*43*47;
unitary prime divisors: {29,31,37,41,43,47};
non-unitary prime divisors: {2,3,7}, so a(25) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Boole[n == 1] + PrimeNu@ # - Count[Transpose[FactorInteger@ #][[2]], 1] &@ CatalanNumber@ n, {n, 105}] (* Michael De Vlieger, Feb 25 2017, after Harvey P. Dale at A056169 *)
  • PARI
    catalan(n) = binomial(2*n, n)/(n+1);
    nbud(n) = #select(x->x!=1, factor(n)[,2]);
    a(n) = nbud(catalan(n)); \\ Michel Marcus, Feb 26 2017

Formula

a(n) = A056170(A000108(n)).