A081401 Pseudologarithm (A056239) of n!: a(n) = A056239(A000142(n)).
0, 1, 3, 5, 8, 11, 15, 18, 22, 26, 31, 35, 41, 46, 51, 55, 62, 67, 75, 80, 86, 92, 101, 106, 112, 119, 125, 131, 141, 147, 158, 163, 170, 178, 185, 191, 203, 212, 220, 226, 239, 246, 260, 267, 274, 284, 299, 305, 313, 320, 329, 337, 353, 360, 368, 375, 385, 396, 413
Offset: 1
Keywords
Examples
n=8: 8! = 40320 = 2*2*2*2*2*2*2*3*3*5*7, p-indices = {1,2,3,4}, exponents = {7,2,1,1}; a(8) = 1*7 + 2*2 + 3*1 + 4*1 = 7 + 4 + 3 + 4 = 18.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a:= n-> add (numtheory[pi](i[1])*i[2], i=ifactors(n!)[2]): seq (a(n), n=1..100); # Alois P. Heinz, Aug 09 2012
-
Mathematica
Array[Total[FactorInteger[#!] /. {p_, c_} /; p > 0 :> PrimePi[p] c] &, 59] (* Michael De Vlieger, Jun 26 2020 *)
Formula
a(n) = Sum(k*e(k)) where k runs through indices of prime factors of n!, while e(k) is the exponent of the corresponding prime factor.
Comments