A081415 Triply balanced primes: primes which are averages of both their immediate neighbor, their second neighbors and their third neighbors.
683783, 1056317, 1100261, 2241709, 2815301, 4746359, 10009049, 12003209, 13810981, 14907649, 15403009, 15730067, 16595081, 17518201, 19755301, 20378327, 21006487, 21574453, 21579983, 22237121, 22625179, 25876901, 26018791, 26354201, 27188141, 28469461
Offset: 1
Keywords
Examples
p = 683383: 683747 + ... + p + ... + 683819 = 7p; 683759 + ... + p + ... + 683807 = 5p; 683777 + p + 683789 = 3p.
Links
- Jud McCranie, Table of n, a(n) for n = 1..1000
- Wikipedia, Balanced prime
Programs
-
GAP
P:=Filtered([1,3..3*10^7+1],IsPrime);; a:=Intersection(List([1,2,3],b->List(Filtered(List([0..Length(P)-(2*b+1)],k->List([1..2*b+1],j->P[j+k])),i->Sum(i)/(2*b+1)=i[b+1]),m->m[b+1]))); # Muniru A Asiru, Apr 08 2018
-
Mathematica
a = {}; Do[p = 2Prime[n]; If[p == Prime[n - 1] + Prime[n + 1] && p == Prime[n - 2] + Prime[n + 2] && p == Prime[n - 3] + Prime[n + 3], Print[p / 2]; AppendTo[a, p / 2]], {n, 5, 1100000}]; a (* Robert G. Wilson v, Jun 28 2004 *) Transpose[Select[Partition[Prime[Range[1620000]],7,1],(#[[1]]+#[[7]])/2 == (#[[2]]+#[[6]])/2==(#[[3]]+#[[5]])/2==#[[4]]&]][[4]] (* Harvey P. Dale, Sep 13 2013 *)
-
Python
from sympy import nextprime; p, q, r, s, t, u, v = 2, 3, 5, 7, 11, 13, 17 while v < 29000000: if p + v == q + u == r + t == 2*s: print(s, end = ', ') p, q, r, s, t, u, v = q, r, s, t, u, v, nextprime(v) # Ya-Ping Lu, May 11 2024
Comments