cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081415 Triply balanced primes: primes which are averages of both their immediate neighbor, their second neighbors and their third neighbors.

Original entry on oeis.org

683783, 1056317, 1100261, 2241709, 2815301, 4746359, 10009049, 12003209, 13810981, 14907649, 15403009, 15730067, 16595081, 17518201, 19755301, 20378327, 21006487, 21574453, 21579983, 22237121, 22625179, 25876901, 26018791, 26354201, 27188141, 28469461
Offset: 1

Views

Author

Labos Elemer, Apr 02 2003

Keywords

Comments

Equivalently, primes which are balanced primes of orders 1, 2, and 3. - Muniru A Asiru, Apr 08 2018
Numbers m such that A346399(m) is odd and >= 7. - Ya-Ping Lu, May 11 2024

Examples

			p = 683383: 683747 + ... + p + ... + 683819 = 7p; 683759 + ... + p + ... + 683807 = 5p; 683777 + p + 683789 = 3p.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1,3..3*10^7+1],IsPrime);;
    a:=Intersection(List([1,2,3],b->List(Filtered(List([0..Length(P)-(2*b+1)],k->List([1..2*b+1],j->P[j+k])),i->Sum(i)/(2*b+1)=i[b+1]),m->m[b+1]))); # Muniru A Asiru, Apr 08 2018
    
  • Mathematica
    a = {}; Do[p = 2Prime[n]; If[p == Prime[n - 1] + Prime[n + 1] && p == Prime[n - 2] + Prime[n + 2] && p == Prime[n - 3] + Prime[n + 3], Print[p / 2]; AppendTo[a, p / 2]], {n, 5, 1100000}]; a (* Robert G. Wilson v, Jun 28 2004 *)
    Transpose[Select[Partition[Prime[Range[1620000]],7,1],(#[[1]]+#[[7]])/2 == (#[[2]]+#[[6]])/2==(#[[3]]+#[[5]])/2==#[[4]]&]][[4]] (* Harvey P. Dale, Sep 13 2013 *)
  • Python
    from sympy import nextprime; p, q, r, s, t, u, v = 2, 3, 5, 7, 11, 13, 17
    while v < 29000000:
        if p + v == q + u == r + t == 2*s: print(s, end = ', ')
        p, q, r, s, t, u, v = q, r, s, t, u, v, nextprime(v) # Ya-Ping Lu, May 11 2024