A081423 Subdiagonal of array of n-gonal numbers A081422.
1, 3, 12, 34, 75, 141, 238, 372, 549, 775, 1056, 1398, 1807, 2289, 2850, 3496, 4233, 5067, 6004, 7050, 8211, 9493, 10902, 12444, 14125, 15951, 17928, 20062, 22359, 24825, 27466, 30288, 33297, 36499, 39900, 43506, 47323, 51357, 55614, 60100
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> (2*n^3+n^2+n+2)/2); # G. C. Greubel, Aug 14 2019
-
Magma
[(2*n^3+n^2+n+2)/2: n in [0..40]]; // Vincenzo Librandi, Aug 08 2013
-
Maple
a := n-> (2*n^3+n^2+n+2)/2; seq(a(n), n = 0..40); # G. C. Greubel, Aug 14 2019
-
Mathematica
CoefficientList[Series[(1 -2x +7x^2 -6x^3)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Aug 08 2013 *)
-
PARI
vector(40, n, n--; (2*n^3+n^2+n+2)/2) \\ G. C. Greubel, Aug 14 2019
-
Sage
[(2*n^3+n^2+n+2)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
Formula
a(n) = (2*n^3 + n^2 + n + 2)/2.
G.f.: (1 -2*x +7*x^2 -6*x^3)/(1-x)^5.
E.g.f.: (2 +4*x +7*x^2 +2*x^3)*exp(x)/2. - G. C. Greubel, Aug 14 2019
Comments