cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A081444 Second binomial transform of expansion of cosh(sinh(x)).

Original entry on oeis.org

1, 2, 5, 14, 45, 162, 641, 2718, 12249, 58370, 294493, 1571374, 8858053, 52542882, 326804185, 2122860862, 14366452913, 101063123202, 738075208501, 5587492946510, 43795838894941, 354876969914786, 2968890716640945
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Second binomial transform of A003709 (viewed as unsigned, with periodic zeros added).
Binomial transform of A081443.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(2*x)*Cosh(Sinh(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 14 2019
    
  • Maple
    seq(coeff(series(exp(2*x)*cosh(sinh(x)), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 14 2019
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[2x]Cosh[Sinh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(2*x)*cosh(sinh(x)) )) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [factorial(n)*( exp(2*x)*cosh(sinh(x)) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 14 2019

Formula

E.g.f.: exp(2*x) * cosh(sinh(x)).
Showing 1-1 of 1 results.