A081492 Sum of terms in n-th row of A081491.
1, 5, 18, 54, 135, 291, 560, 988, 1629, 2545, 3806, 5490, 7683, 10479, 13980, 18296, 23545, 29853, 37354, 46190, 56511, 68475, 82248, 98004, 115925, 136201, 159030, 184618, 213179, 244935, 280116, 318960, 361713, 408629, 459970, 516006, 577015
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([1..40], n-> n*(2*(n-1)^3+7*n-1)/6); # G. C. Greubel, Aug 13 2019
-
Magma
[n*(2*(n-1)^3+7*n-1)/6: n in [1..40]]; // G. C. Greubel, Aug 13 2019
-
Maple
seq(n*(2*(n-1)^3+7*n-1)/6, n=1..40); # G. C. Greubel, Aug 13 2019
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1},{1,5,18,54,135},40] (* Harvey P. Dale, Jul 01 2018 *)
-
PARI
vector(40, n, n*(2*(n-1)^3+7*n-1)/6) \\ G. C. Greubel, Aug 13 2019
-
Sage
[n*(2*(n-1)^3+7*n-1)/6 for n in (1..40)] # G. C. Greubel, Aug 13 2019
Formula
a(n) = n*(2*n^3 - 6*n^2 + 13*n - 3)/6.
G.f.: x*(1+x)*(1-x+4*x^2)/(1-x)^5. - Colin Barker, Jul 28 2012
E.g.f.: x*(6 +9*x +6*x^2 +2*x^3)/6. - G. C. Greubel, Aug 13 2019
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003.
Formula corrected by Colin Barker, Jul 28 2012
Comments