cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081495 Start with Pascal's triangle; form a rhombus by sliding down n steps from top on both sides then sliding down inwards to complete the rhombus and then deleting the inner numbers; a(n) = sum of entries on perimeter of rhombus.

Original entry on oeis.org

1, 5, 17, 55, 189, 681, 2519, 9451, 35765, 136153, 520695, 1998745, 7696467, 29716025, 115000947, 445962899, 1732525861, 6741529113, 26270128535, 102501265057, 400411345659, 1565841089321, 6129331763923, 24014172955545, 94163002754699, 369507926510401
Offset: 1

Views

Author

Amarnath Murthy, Mar 25 2003

Keywords

Examples

			The rhombus pertaining to n = 4 is obtained from the solid rhombus
.....1
...1...1
.1...2...1
1..3...3...1
..4..6...4
...10..10
.....20
giving
.....1
...1...1
.1.......1
1..........1
..4......4
...10..10
.....20
and the sum of all the numbers is 55, a(4) = 55.
		

Crossrefs

Programs

  • GAP
    B:=Binomial;; Concatenation([1], List([2..25], n-> B(2*n, n)-B(2*(n-1), n-1) +2*n -3)); # G. C. Greubel, Aug 13 2019
  • Magma
    C:=Catalan; [1] cat [(n+1)*C(n) -n*C(n-1) +2*n-3: n in [2..25]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(((1-x)^3 - (1-2*x-x^3)*sqrt(1-4*x))/((1-x)^2*sqrt(1-4*x) ), x, n+1), x, n), n = 1..25); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{C = CatalanNumber}, Table[If[n==1, 1, (n+1)*C[n] -n*C[n-1] +2*n-3], {n, 25}]] (* G. C. Greubel, Aug 13 2019 *)
  • PARI
    vector(25, n, b=binomial; if(n==1,1,b(2*n, n)-b(2*(n-1), n-1) +2*n -3)) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    b=binomial; [1]+[b(2*n, n)-b(2*(n-1), n-1) +2*n -3 for n in (2..25)] # G. C. Greubel, Aug 13 2019
    

Formula

a(0)=1 for n>0 a(n)=binomial(2*n, n)-binomial(2*n-2, n-1)+2*n-3. - Benoit Cloitre, Sep 10 2003
G.f.: ((1-x)^3 - (1-2*x-x^3)*sqrt(1-4*x))/((1-x)^2*sqrt(1-4*x)). - G. C. Greubel, Aug 13 2019

Extensions

More terms from Benoit Cloitre, Sep 10 2003