cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A081499 Sum at 45 degrees to horizontal in triangle of A081498.

Original entry on oeis.org

1, 2, 4, 6, 8, 11, 12, 16, 15, 20, 16, 22, 14, 21, 8, 16, -3, 6, -20, -10, -44, -33, -76, -64, -117, -104, -168, -154, -230, -215, -304, -288, -391, -374, -492, -474, -608, -589, -740, -720, -889, -868, -1056, -1034, -1242, -1219, -1448, -1424, -1675, -1650, -1924, -1898, -2196, -2169, -2492, -2464, -2813
Offset: 1

Views

Author

Amarnath Murthy, Mar 25 2003

Keywords

Comments

The leading diagonal is given by A080956(n) = ((n+1)(2-n)/2).

Examples

			a(7) = 7+5+2+(-2) = 12.
		

Crossrefs

Programs

  • Maple
    seq((n+floor(n/2)+1)*(n-floor(n/2))/2-binomial(ceil(n/2)+1,ceil(n/2)-2),n=1..60); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,2,4,6,8,11,12},60] (* Harvey P. Dale, Jan 17 2022 *)
  • PARI
    Vec(x*(1 + x - x^2 - x^3 - x^4) / ((1 - x)^4*(1 + x)^3) + O(x^60)) \\ Colin Barker, Nov 12 2017

Formula

a(n) = (n+floor(n/2)+1)*(n-floor(n/2))/2-binomial(ceiling(n/2)+1, ceiling(n/2)-2). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
G.f.: x*(1 + x - x^2 - x^3 - x^4) / ((1 - x)^4*(1 + x)^3). - Colin Barker, Dec 18 2012
From Colin Barker, Nov 12 2017: (Start)
a(n) = (1/96)*(-2*n^3 + 36*n^2 + 32*n) for n even.
a(n) = (1/96)*(-2*n^3 + 30*n^2 + 50*n + 18) for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7.
(End)

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
Showing 1-1 of 1 results.