A081506
Primes of the form 2^k + 3^k + 4^k.
Original entry on oeis.org
3, 29, 353, 4889, 72353, 105312291668560568089831550410013687058921146068446092937783402353
Offset: 1
k = 2: 2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29, which is prime.
-
Do[s=2^w+3^w+4^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}]
Select[Table[2^n+3^n+4^n,{n,0,200}],PrimeQ] (* Harvey P. Dale, Aug 20 2015 *)
-
lista(kmax) = {my(p); for(k = 0, kmax, p = 2^k + 3^k + 4^k; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 17 2024
A240766
Least number k > 0 such that n^k + (n-1)^k + ... + 3^k + 2^k is prime, or 0 if no such k exists.
Original entry on oeis.org
1, 1, 2, 0, 0, 2, 12, 0, 0, 56, 10, 0, 0, 0, 16, 0, 0, 0
Offset: 2
4^1+3^1+2^1 = 9 is not prime. 4^2+3^2+2^2 = 29 is prime. Thus, a(4) = 2.
-
a(n)=for(k=1,4000,if(ispseudoprime(sum(i=2,n,i^k)),return(k)))
n=1; while(n<200,print(a(n));n+=1)
A240767
Numbers n such that n^k + (n-1)^k + ... + 3^k + 2^k is prime for some natural number k.
Original entry on oeis.org
2, 3, 4, 7, 8, 11, 12, 16
Offset: 1
2^k is prime for at least one k (and only one k in this instance; k = 1). Thus, 2 is a member of this sequence.
3^k+2^k is prime for at least one k (see A082101). Thus, 3 is a member of this sequence.
-
a(n)=for(k=1,4000,if(ispseudoprime(sum(i=2,n,i^k)),return(k)))
n=1; while(n<200,if(a(n),print(a(n)));n+=1)
Showing 1-3 of 3 results.
Comments