A081512 a(n) = smallest number which can be expressed as the sum of n of its distinct divisors, or 0 if no such number exists.
1, 0, 6, 12, 24, 24, 48, 60, 84, 120, 120, 120, 180, 180, 240, 360, 360, 360, 360, 672, 720, 720, 720, 840, 840, 1080, 1260, 1260, 1260, 1680, 1680, 1680, 2160, 2520, 2520, 2520, 2520, 2520, 2520, 3360, 4320, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040
Offset: 1
Keywords
Examples
24 is a sum of 6 of its divisors. Namely, 1+2+3+4+6+8=24. Furthermore, 24 is the smallest natural number with at least 6 divisors (not including itself), so it must be the smallest natural number that is a sum of 6 of its divisors.
Links
- David A. Corneth, Table of n, a(n) for n = 1..552 (first 144 terms from Robert Israel)
Programs
-
Maple
A081512 := proc(n) local a, dvs, dset,s,p; if n= 2 then RETURN(0) ; end if; for a from 1 do dvs := numtheory[divisors](a) ; dset := combinat[choose](dvs,n) ; for s in dset do if add(p,p=s) = a then RETURN(a) ; end if; end do; end do: end: for n from 2 do a := A081512(n) ; printf("%d, ",a) ; od: # R. J. Mathar, Nov 11 2008
-
Mathematica
(* This partly empirical program is just a recomputation of existing data. *) f[n_, k_] := Module[{c, cc, dd}, dd = Most@ Divisors@k; cc = c[#]& /@ Range@ Length@dd; FindInstance[AllTrue[cc, 0 <= # <= 1&] && cc.dd == k && Total[cc] == n, cc, Integers, 1]]; a[n_] := a[n] = Switch[n, 1, 1, 2, 0, 3, 6, _, For[k = a[n - 1], True, k = k + If[n < 25, 1, 60], If[f[n, k] != {}, Return[k]]]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 49}] (* Jean-François Alcover, Oct 21 2024 *)
Extensions
Corrected by Caleb M. Shor (cshor(AT)bates.edu), Sep 26 2007
Extended beyond a(7) by R. J. Mathar, Nov 11 2008
a(16)-a(49) from Max Alekseyev, Jul 27 2009
Edited by N. J. A. Sloane, May 24 2020, following advice from Jinyuan Wang.
Comments