cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081555 a(n) = 6*a(n-1) - a(n-2) - 4, a(0)=3, a(1)=7.

Original entry on oeis.org

3, 7, 35, 199, 1155, 6727, 39203, 228487, 1331715, 7761799, 45239075, 263672647, 1536796803, 8957108167, 52205852195, 304278004999, 1773462177795, 10336495061767, 60245508192803, 351136554095047, 2046573816377475, 11928306344169799, 69523264248641315
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003

Keywords

Comments

2*(a(2*n+1) + 1) is a perfect square.

Crossrefs

Programs

  • GAP
    a:=[3,7];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]-4; od; a; # G. C. Greubel, Aug 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)) )); // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Aug 13 2019
  • Mathematica
    a[n_]:= a[n] = 6*a[n-1] -a[n-2] -4; a[0] = 3; a[1] = 7; Table[a[n], {n, 0, 25}]
    LinearRecurrence[{7,-7,1}, {3,7,35}, 30] (* G. C. Greubel, Aug 13 2019 *)
  • PARI
    a(n)=1+2*real((3+quadgen(32))^n)
    
  • PARI
    a(n)=1+2*subst(poltchebi(abs(n)),x,3)
    
  • PARI
    a(n)=if(n<0,a(-n),1+polsym(1-6*x+x^2,n)[n+1])
    
  • Sage
    def A081555_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2))).list()
    A081555_list(30) # G. C. Greubel, Aug 13 2019
    

Formula

a(n) = A051927(2n).
a(n) = A003499(n) + 1.
a(2n) + 1 = A003499(n)^2.
a(n) = (3 + 2*sqrt(2))^n + (3 - 2*sqrt(2))^n + 1.
G.f.: (3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)).