A081555 a(n) = 6*a(n-1) - a(n-2) - 4, a(0)=3, a(1)=7.
3, 7, 35, 199, 1155, 6727, 39203, 228487, 1331715, 7761799, 45239075, 263672647, 1536796803, 8957108167, 52205852195, 304278004999, 1773462177795, 10336495061767, 60245508192803, 351136554095047, 2046573816377475, 11928306344169799, 69523264248641315
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Programs
-
GAP
a:=[3,7];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]-4; od; a; # G. C. Greubel, Aug 13 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)) )); // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Aug 13 2019
-
Mathematica
a[n_]:= a[n] = 6*a[n-1] -a[n-2] -4; a[0] = 3; a[1] = 7; Table[a[n], {n, 0, 25}] LinearRecurrence[{7,-7,1}, {3,7,35}, 30] (* G. C. Greubel, Aug 13 2019 *)
-
PARI
a(n)=1+2*real((3+quadgen(32))^n)
-
PARI
a(n)=1+2*subst(poltchebi(abs(n)),x,3)
-
PARI
a(n)=if(n<0,a(-n),1+polsym(1-6*x+x^2,n)[n+1])
-
Sage
def A081555_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2))).list() A081555_list(30) # G. C. Greubel, Aug 13 2019
Comments