A081557 Binomial transform of expansion of exp(cosh(x)), A005046.
1, 1, 2, 4, 11, 31, 107, 379, 1556, 6556, 31007, 150349, 801341, 4373461, 25853102, 156297964, 1012382291, 6698486371, 47089993967, 337789490599, 2557480572656, 19738202807236, 159928950077327, 1319703681935929, 11382338060040761, 99896787342523081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A081558.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(x)+x-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series(exp(cosh(x)+x-1), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
With[{nn = 30}, CoefficientList[Series[Exp[Cosh[x] + x - 1], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
-
PARI
my(x='x+O('x^30)); Vec(serlaplace( exp(cosh(x)+x-1) )) \\ G. C. Greubel, Aug 13 2019
-
Sage
[factorial(n)*( exp(cosh(x)+x-1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019
Formula
E.g.f.: exp(x) * exp(cosh(x)) / e = exp(cosh(x)+x-1).