A081565 Binomial transform of expansion of exp(3cosh(x)).
1, 1, 4, 10, 49, 181, 1039, 4915, 32134, 182206, 1330609, 8706655, 70012309, 515822581, 4517489344, 36835737130, 348313165249, 3103526872081, 31462900577419, 303344232041215, 3277823503679554, 33930282904263406
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(3*Cosh(x)+x-3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series(exp(3*cosh(x)+x-3), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
With[{nn = 30}, CoefficientList[Series[Exp[3 Cosh[x] + x - 3], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
-
PARI
my(x='x+O('x^30)); Vec(serlaplace( exp(3*cosh(x)+x-3) )) \\ G. C. Greubel, Aug 13 2019
-
Sage
[factorial(n)*( exp(3*cosh(x)+x-3) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019
Formula
E.g.f.: exp(x) * exp(3*cosh(x))/e^3 = exp(3*cosh(x)+x-3).
Comments